Ausgaben in DELPHIN 6.1

Heiko Fechner

Inhaltsverzeichnis

1. Übersicht
2. Formatierung
2.1. Datenbeschreibung (Formatierung)
2.2. Zeitpläne / Ausgaberaster
3. Erstellen und Zuordnen
3.1. Erstellung mit dem Projektassistenten
3.2. Direkte Ausgabenerstellung
4. Mögliche Ausgabegrößen
4.1. Elementausgaben
4.1.1. Wärmetransport
4.1.2. Feuchtetransport
4.1.3. Lufttransport
4.1.4. Salztransport
4.1.5. VOC Transport
4.2. Ausgaben für Flüsse
4.3. Ausgaben für Quellen und Senken
5. Welche Ausgaben werden benötigt?

1. Übersicht

Ziel einer DELPHIN Simulation ist es Ergebnisse zu erzielen, die im Sinne der Aufgabenstellung ausgewertet werden können. Dazu produziert DELPHIN Ausgaben. Das sind immer Ausgabedateien die zeitabhängige Werte enthalten. Dabei kann man zwei Hauptypen unterscheiden:

- Wertausgaben ein Wert pro Zeitpunkt
- Feldausgaben mehrere Werte pro Zeitpunkt

Wertausgaben werden erzeugt, indem die Ausgabe nur einem Element zugewiesen ist oder bei mehreren Elementen eine Zusammenfassung erfolgt (Mittelwert, Summe, Maximum, Minimum).

Abbildung 1. Auswahl eines Elementes in einer 2D Konstruktion

Bei **Feldausgaben** gibt es neben Zeit und Wert noch ein bis drei Koordinatenachsen zur Zuordnung der Werte zur Konstruktion. Es müssen immer mehrere Elemente gewählt sein.

Abbildung 2. Auswahl mehrerer Elemente (Bereich) in einer 2D Konstruktion

Im Postprozessing (PostProc 2) von DELPHIN wird hier folgende Teminologie verwendet:

- 2D Wert und Zeit
- 3D Wert, Zeit und eine Koordinate
- 4D Wert, Zeit und zwei Koordinaten (ab 2D Simulationen)
- 5D Wert, Zeit und drei Koordinaten (nur 3D Simulationen)

3D Ausgaben werden manchmal auch als **Profile** bezeichnet, weil sie zeitabhängige Profile der Größen abbilden können. Mit Größen sind die physikalischen Kenngrößen gemeint, die in DELPHIN ausgegeben werden können. Wir unterscheiden hier 3 Hauptkategorien:

- Elementausgaben
 - Zustandsvariablen
 - abgeleitete Größen
 - Materialkennwerte
 - mittlere Ströme
- Ströme
 - Randströme
 - Feldströme
- Ausgaben von Quellen/Senken

Als Zustandsvariablen werden die physikalischen Größen bezeichnet, welche bilanziert werden und somit den Zustand des Systems darstellen.

- Wärmetransport innere Energie
- Feuchtetransport Feuchtemassendichte
- Lufttransport Luftmassendichte

Aus diesen Zustandsvariablen können verschiedene weitere Größen abgeleitet werden, wie z.B. aus der inneren Energie die Temperatur. Alle diese Größen sind immer auf die entsprechenden Volumenelemente bezogen. In diesem Fall spricht man auch vom repräsentativen Elementarvolumen (REV). Alle Ausgaben sind bestimmten Transportprozessen, Zustandsgrößen oder Quellmodellen zugeordnet. Sie sind nur dann präsent, wenn diese Prozesse im aktuellen Projekt auch vorhanden sind. Die Tabellen im Abschnitt Mögliche Ausgabegrößen zeigen alle Ausgaben sortiert nach Typ und zugehörigen Prozess.

2. Formatierung

Die Formatierung von Ausgabedaten in DELPHIN erfolgt in zwei Teilbereichen:

- Datenbeschreibung
- Zeitplan

Dabei wird jede Datenbeschreibung mit einem Zeitplan verbunden und bildet damit einen Ausgabedatensatz.

Abbildung 3. Ausgabe als Kombination von Dateibeschreibung und Zeitplan

2.1. Datenbeschreibung (Formatierung)

🧖 Ausgabe	×
Definition	
Dateiname (ohne Pfad): RH field	1
Auswahl der physikalischen Größe	-
Physikalische Größe: RelativeHumidity	
Konvertierungs-/Berechnungsoptionen	
Werte in ausgewählten Elementen/Seiten mitteln oder integrieren, oder alle individuel	e Zahlenwerte speichern?
Individuelle Werte jedes ausgewählten Elements oder jeder Seite [Single]	3 ~
Zeitliche Integration/Mittlung?	
Werte am Ausgabezeitpunkt schreiben [None]	4 ~
Ausgabeeinheit für Werte:	5 *
Ausgabefrequenz	_
Ausgaberaster: 0.5 d	✓ Bearbeiten 7
	OK Abbrechen

Abbildung 4. Dialog zur Einstellung der Datenbeschreibung einer Ausgabe

Die Datenbeschreibung enthält folgende Informationen:

- Dateiname (1)
- physikalische Größe (2)
- Berechnung im Raum (3)
- Berechnung in der Zeit (4)
- Ausgabeeinheit (5)
- verwendeter Zeitplan (6,7)

Der **Dateiname** (1) kann prinzipiell frei festgelegt werden. Dabei sollte man sich an die Vorgaben des Betriebssystems halten. Um Probleme bei der Weitergabe bzw. Bearbeitung zu vermeiden, sollte man auf Sonderzeichen im Namen verzichten. Zur Trennung einzelner Wörter sollten Leerzeichen, Minus oder Unterstrich verwendet werden. Der Name sollte die Ausgabegröße, die Position und die Formatierung reflektieren. Das erleichtert die Auswahl bei einer späteren Weiterverarbeitung im Postprocessing.

Bei Klick auf die Schaltfläche rechts neben dem Eingabefeld für die **physikalische Größe** (2) öffnet sich ein Auswahldialog.

and the standard and a standard and a standard			
Тур	Name	Einheit	Beschreibung
Elementbasierte Quelle/Senke	ThermalLoad	W/m3	Ouelle: Wärmelast/Wärmeguelle
Elementbasierte Quelle/Senke	LongWaveRadiationLoad	W/m3	Quelle: Wärmelast durch langwelligen Strahlungsaustausch
Elementbasierte Quelle/Senke	MoistureLoadWTAConvection	kg/m3s	Quelle: Feuchtelast durch konvektive Quelle nach WTA 6.2
Randstrom	FluxShortWaveRadiationGlobal	W/m2	Global Short Wave Radiation absorbed from surface
Stromgröße zwischen Elementen	FluxLiquidConvection	kg/m2s	Konvektiver Massenfluss für flüssiges Wasser
Stromgröße zwischen Elementen	FluxVaporDiffusion	kg/m2s	Massenfluss für Wasserdampfdiffusion
Stromgröße zwischen Elementen	FluxAirConvection	kg/m2s	Konvektiver Massenfluss für trockene Luft
Stromgröße zwischen Elementen	TotalFluxHeat	W/m2	Summe alle Wärmeströme
Zustandsvariable oder abgeleitete Größe	Temperature	с	Temperatur
Zustandsvariable oder abgeleitete Größe	ThermalConductivity	W/mK	Wärmeleitfähigkeit
Zustandsvariable oder abgeleitete Größe	ThermalConductivity_Y	W/mK	Wärmeleitfähigkeit in Berechnungsrichtung Y
Zustandsvariable oder abgeleitete Größe	ThermalConductivity Z	W/mK	Wärmeleitfähigkeit in Berechnungsrichtung Z
Zustandsvariable oder abgeleitete Größe	MoistureMassDensity	kg/m3	Gesamtmassendichte von flüssigen Wasser, Wasserdampf und Eis
Zustandsvariable oder abgeleitete Größe	OverhygroscopicWaterMassDensity	kg/m3	Massendichte von überhygroskopischen flüssigen Wasser (Kondensat) bezogen auf REV
Zustandsvariable oder abgeleitete Größe	IceMassDensity	kg/m3	Massendichte von Eis bezogen auf REV
Zustandsvariable oder abgeleitete Größe	LiquidContent	m3/m3	Volumenanteil der Flüssigphase bezogen auf das REV
Zustandsvariable oder abgeleitete Größe	MoistureMassByMass	ka/ka	Massendichte der gesamten Feuchte bezogen auf REV
Zustandsvariable oder abgeleitete Größe	DegreeOfSaturation	%	Prozentualer Anteil des mit Wasser und Eis gefüllten Porenraumes (ohne Eis genau wie LiguidVolu
Zustandsvariable oder abgeleitete Größe	IceVolumeRatio	%	Verhältnis des Eisvolumens zur effektiven Sättigung
Zustandsvariable oder abgeleitete Größe	RelativeHumidity	%	Relative Luftfeuchtickeit
Zustandsvariable oder abgeleitete Größe	CapillaryPressure	Pa	Kapillardruck (negativ)
Zustandsvariable oder abgeleitete Größe	GasPressureOffset	Pa	Gasdruckdifferenz zu atmosphärischen Druck (101325 Pa)
Zustandsvariable oder abgeleitete Größe	VaporPermeability	s	Wasserdampfleitfähigkeit
Zustandsvariable oder abgeleitete Größe	AirVelocityMagnitude	m/s	Mittlere Luftgeschwindigkeit
Elementbasierte Quelle/Senke	ThermalLoadAirChange	W/m3	Ouelle: Wärmelast durch Luftaustausch
Elementbasierte Ouelle/Senke	MoistureLoadAirChange	ka/m3s	Ouelle: Feuchtelast (Dampf) durch Luftaustausch
Elementbasierte Quelle/Senke	MoistureEnthalpyAirChange	W/m3	Quelle: Entalpie durch Feuchtelast bei Luftaustausch
Elementbasierte Quelle/Senke	MoistureEnthalpyWTAConvection	W/m3	Quelle: Entalpie von Feuchtelast durch konvektive Quelle nach WTA 6.2
Elementbasierte Quelle/Senke	MoistureLoad	kg/m3s	Ouelle: Feuchtelast/Flüssigwasserguelle
Elementbasierte Quelle/Senke	MoistureLoadEnthalpy	W/m3	Quelle: Entalpie von Feuchtelast/Flüssigwasserquelle
Elementbasierte Quelle/Senke	SaltProductionRateBoundWater	kg/m3s	Quelle: Massenproduktionsrate von gebundenen Wasser von gelöstem Salz
Elementbasierte Quelle/Senke	SaltProductionRateEnthalpy	W/m3	Quelle: Entalpie infolge isothermer Lösung bzw. Kristallisation von Salz
Elementbasierte Quelle/Senke	ThermalLoadGroundWaterFlow	W/m3	Quelle: Thermische Last/Wärmequelle aufgrund von eingeleiteten Grundwasser
Elementbasierte Quelle/Senke	VOCAdsorptionRate	kg/m3s	Quelle: Massenproduktionsrate der festen Phase von VOC durch Kondensation aus der Gasphase
Elementbasierte Quelle/Senke	VOCDesorptionRate	kg/m3s	Quelle: Massenproduktionsrate der Gasphase von VOC durch Emission von der festen Phase
Elementbasierte Quelle/Senke	VOCLoadAirChange	kg/m3s	Quelle: VOC Massenkonzentrationsquelle infolge Luftaustausch
Elementbasierte Quelle/Senke	VOCSource	mg/m3s	Quelle: VOC Massenproduktionsrate aus vorgegebener Emissionsquelle
Randstrom	FluxShortWaveRadiationDirect	W/m2	Direct Short Wave Radiation absorbed from surface
Randstrom	FluxShortWaveRadiationDiffuse	W/m2	Diffuse Short Wave Radiation absorbed from surface
Randstrom	FluxLongWaveRadiation	W/m2	Langwellige Strahlung
	-		

Abbildung 5. Auswahldialog für die physikalische Größe

Der Dialog listet alle möglichen physikalischen Größen auf, unabhängig davon, ob diese bei der konkreten Berechnung verfügbar sind. In der Ersten Spalte wird der Typ dargestellt. Die Einteilung erfolgt wie in der Übersicht dargestellt. Die zweite Spalte enthält den Namen der Größe. Dieser ist in DELPHIN ein Schlüsselwort und wird nicht übersetzt. Eine Erläuterung zur Größe findet sich in der letzten Spalte und im Kapitel 'Mögliche Ausgabegrößen'. Um die Auswahl zu erleichtern, merkt sich DELPHIN die zuletzt gewählten Größen und stellt diese bei Bedarf in **fetter Schrift** oben in der Liste dar. Dieses Verhalten kann durch die Auswahlbox links unten im Dialog eingestellt werden. Im Abschnitt 'Konvertierungs- und Berechnungsoptionen' gibt es zwei Auswahlboxen. Bei der Ersten (3) wird festgelegt wie der Ausgabewert bei einer Zuweisung zu mehreren Elementen berechnet wird. Hier stehen folgende Möglichkeiten zur Auswahl:

- 1. individuelle Werte jedes ausgewählten Elementes oder jeder Seite Single
- 2. Volumen-/Flächengewichtetes Mittel Mean
- 3. Volumen-/Flächengewichtetes Integral Integral
- 4. Minimalwert im Bereich Min
- 5. Maximalwert im Bereich Max

į	쳤 Ausgabe	x
	Definition	
L	Dateiname (ohne Pfad): moisture mass iso	
L	Auswahl der physikalischen Größe	
h	Physikalische Größe: MoistureMassDensity	
	Konvertierungs-/Berechnungsoptionen Werte in ausgewählten Elementen/Seiten mitteln oder integrieren, oder alle individuelle Zahlenwerte speiche	rn?
Ľ	Individuelle Werte jedes ausgewählten Elements oder jeder Seite [Single]	~
L	Volumen-/Fläckengewichtetes Mittel [Mean]	
L	Minimalwert im Bereich [Min] Maximalwert im Bereich [Max]	
L	Ausgabefrequenz	_
L	Ausgaberaster: 1 h	
	OK Abbrech	ien

Abbildung 6. Auswahl der Berechnungsoptionen für den Raum

Bei der ersten Option (Single) ensteht bei Zuordnung zu mehreren Elementen immer eine Feldausgabe. Es werden also zu jedem Zeitpunkt die Werte aller zugeordneten Elemente ausgegeben. Das erlaubt die Ausgabe von räumlichen Verteilungen bzw. Profilen. Die Art der möglichen Darstellung im Postprocessing hängt hier von der Anzahl der ausgewählten Elemente und der Art der Simulation (1D oder 2D) ab. Wenn nur ein Element gewählt wird ensteht auch wieder eine Wertausgabe wie bei Wahl der Optionen 2 bis 5. Es wird empfohlen bei Einzelwertausgaben immer Option 2 (Mittelwert) zu wählen.

Falls mehrere Elemente gewählt wurden, können folgende Darstellungen im Postprocessing gewählt werden:

1D - Simulation

Abbildung 7. Profildarstellung

Abbildung 8. Farbverlauf mit Zeit auf der x-Achse

Die beiden oben dargestellten Diagramme stellen die gleichen Daten auf zwei verschiedene Arten dar.

2D - Simulation

Bei 2D Simulationen lassen sich diese Daten direkt nur als Farbverlauf zu einem Zeitpunkt darstellen.

Abbildung 9. Verteilung des Wertes zu einem bestimmten Zeitpunkt als Farbverlauf

Das Postprocessing erlaubt noch weitere Schnittdarstellungen. Mehr Informationen dazu gibt es in der Hilfe: www.bauklimatik-dresden.de/postproc/help/de/index.html

Bei den Optionen 2 bis 5 enstehen immer Wertausgaben mit einem Wert pro Zeitpunkt. Diese können als Liniendiagramme dargestellt werden (siehe Abbildung unten) und eignen sich gut zeitliche Veränderungen darzustellen.

Abbildung 10. Beispiel für ein Liniendiagramm

Solche Ausgaben benötigt man auch für die im Postprocessing enthaltenen Schadensmodelle.

Die Option 3 ist hierbei ein Sonderfall, weil hier die Summe der phyikalischen Größe über alle gewählten Elemente gebildet wird. Das ist natürlich nur bei summierbaren Größen, wie z.B. Massen, möglich. Für nicht summierbare Größen, wie z.B. Temperatur, wird diese Option nicht angeboten. Die Einheit der Ausgabegröße wird dann ebenfalls angepasst. Z.B. wäre die Einheit der Wassermassendichte kg/m³. Wird hier ein räumliches Integral gewählt wird daraus die Wassermasse in der Einheit kg für den zugewiesenen Bereich.

Die Optionen 4 und 5 liefern den Minimal- bzw. Maximalwertwert des zugewiesenen Bereiches. Das kann besonders bei der Schadensmodellierung für Worst-Case-Analysen interessant werden.

Die zweite Auswahlbox (4) legt die Berechnungsoptionen für den Zeitverlauf fest. Folgende Varianten sind wählbar:

- 1. Werte am Ausgabezeitpunkt schreiben None
- 2. zeitlich gemittelte Werte Mean
- 3. Werte in der Zeit integrieren Integral
- 4. Minimalwert innerhalb des Simulationszeitraums Min
- 5. Maximalwert innerhalb des Simulationszeitraums Max

🧖 Ausgabe		x
Definition		
Dateiname (ohne Pfad): Dampfstrom]
Auswahl der physikalischen Größe		
Physikalische Größe: FluxVaporDiffusion		
Konvertierungs-/Berechnungsoptionen		
Werte in ausgewählten Elementen/Seiten mitteln oder integrieren, oder alle individuelle Zahlenwerte speic	hern'	?
Individuelle Werte jedes ausgewählten Elements oder jeder Seite [Single]	~	
Zeitliche Integration/Mittlung?		
Werte am Ausgabezeitpunkt schreiben [None]	~	
Werte am Ausgabezeitpunkt schreiben [None] Zeitlich gemittelte Werte (Mittelwert aller im letzten Ausgabeschritt berechneten Werte) [Mean] Werte in der Zeit integrieren [Integral] Minimalwert innerhalb des Simulationszeitraumes [Min] Maximalwert innerhalb des Simulationszeitraums [Max] Ausgaberaster: 0.5 d	en	
OK Abbre	echer	

Abbildung 11. Auswahl der Berechnungsoptionen für die Zeit

Beim Erstellen von neuen Ausgaben wird standardmäßig immer die Variante 1 verwendet.

Bei Variante 2 wird ein Mittelwert über die im Zeitplan eingestellten Zeitschritte gebildet. Dazu werden die Werte zu den internen Zeitschritten des Solvers verwendet. Ähnlich werden auch Varianten 4 und 5 berechnet. Hier wird der jeweilige Minimal- bzw. Maximalwert über den Zeitschritt ausgegeben. Bei kleinen Ausgabeschrittweiten (←1h) besteht meist kaum ein Unterschied zur normalen Ausgabe.

Die zeitliche Integration steht nur bei Flussausgaben zur Verfügung. Hier werden ebenfalls die Werte zu den internen Solverzeitschritten aufsummiert und durch die Zeitschrittlänge geteilt. Die Einheit wird dabei angepasst. Z.B. bei einer Ausgabe der Wärmestromdichte ändert sich W/m² zu J/m².

Die Eineiteneinstellung (5) betrifft nur die Einheit der physikalischen Größe. Die Zeiteinheit wird in Delphin bei den Modelloptionen festgelegt.

Modelloptionen Solveroptionen Performance-Einstellungen	
Die Einstellungen auf dieser Seite kontrollieren die wesentlichen physikalischen Eigenschaften des Modells.	
C Energiebilanzgleichung	Zusätzliche Modellierungsoptionen
Standard Anfangstemperatur: 4	C Verwende anisotropisches Materialmodell
🔿 Verwende Wärmeleitfähigkeit des trockenen Materials (LAMBDA)	Ausgabeoptionen
 Verwende Bemessungswert der Wärmeleitfähigkeit (LAMBDA_DESIGN) 	Ausgabezeiteinheit:
Berücksichtige Materialfeuchte	Kondensat über: 95 %
Standard Anfangsluftfeuchte: 70	Schreibe Ausgaben im Binärformat
 Feuchtebilanzgleichung 	Zahlengenauigkeit in ASCII-Dateien: -1 ©
Standard Anfangsluftfeuchte: 70	6 Simulationszeitrahmen
Verwende Kirchhoff-Potential für Flüssigwassertransport	Start date: 01.01.2007 0:00:00
Schwerkraft berücksichtigen	End date: 01.01.2010 0:00:00
✓ Landolar (Sechigerin tantolar) verweinen ✓ Verhindere Überfüllung	Duration: 3 a v

Abbildung 12. Einstellung der Zeiteinheit für die Ausgaben

Jeder Datenbeschreibung muss ein Zeitplan (Ausgaberaster) zugeordnet werden. Auswahlfeld 6 erlaubt eine Wahl eines vorhandenen oder die Erstellung eines neuen Zeitplanes. Zur Erzeugung wählt man in der Liste *Auswählen oder neu erstellen...*

Zeitliche Integration/Mittlung?	
Werte am Ausgabezeitpunkt schreiben [None]	
Ausgabeeinheit für Werte:	kg/m2s 🗸
Ausgabefrequenz	
Ausgaberaster: <a>Auswählen oder neu erstellen>	✓ Neu erstellen

Abbildung 13. Erstellen eines neuen Ausgaberasters

Dann ändert sich die Beschriftung der Schaltfläche rechts neben dem Auswahlfeld zu '*Neu erstellen...*'. Durch Klick auf Schaltfläche '*Bearbeiten*' bzw. '*Neu erstellen...*' öffnet sich der Dialog für die Bearbeitung des Zeitplanes.

2.2. Zeitpläne / Ausgaberaster

Es können beliebig viele Ausgaberaster erstellt werden. Empfohlen werden für die meisten Simulationen aber nur zwei.

- ein grobes Raster für Feldausgaben (mehrere Ausgaben pro Zeitpunkt) Bsp. 1,5 d
- ein feines Raster für Wertausgaben (ein Wert pro Zeitpunkt) Bsp. 1 h

Bei dem groben Raster sollte immer ein Zeitschritt genommen werden, der einen 12h Wert beinhaltet (0,5d, 1,5d, 2,5d) um zu vermeiden, dass die Ausgabe immer um 00:00 Uhr efolgen. Durch den 12h Abschnitt erfolgt dann immer wechselseitig die Ausgabe um Mitternacht und Mittags. Das oben gezeigte Ausgaberaster wird auch im Projektassistenten für die Standardausgaben verwendet.

Ausgaberaster	5	×
🕂 🖉 📁 🗕		
0.5 d		
1 h		

Abbildung 14. Liste der Ausgaberaster in einem Projekt

Das obige Bild zeigt die Liste der in einem Projekt verfügbaren Ausgaberaster. Mit Klick auf das grüne Plus Zeichen erstellt man ein neues Raster. Dann öffnet sich der in der folgenden Abbildung gezeigte Dialog.

Bearbeite Ausgal	beraster		x
Definition Name: Anzahl der Intervalk Ausgabezeitintervalke	e: 1 2	zeitschritte	
Format: Zeitliche Ab	valle ostände oder Intervall	e im Format " <wert> <einheit>" eingeben.</einheit></wert>	
Hinweis: Eine Dauer	r von 0 im letzten Inte	ervall bedeutet, dass dieses Intervall unbegrenzt andauert.	_
Startzeitnunkt	Interval #1		-
Simulationsdauer	0 d	3	
Endzeitpunkt			
Schrittweite	1 h		
Berechnete Interval	le (berechnete Zeitab	stände werden in die Einheit des Startzeitpunktes konvertiert)	
	Interval #1		
Startzeitpunkt	0 d		
Simulationsdauer	unbegrenzt		
Endzeitpunkt		4	
Schrittweite	1 h		
		OK Abbrech	en

Abbildung 15. Dialog zur Bearbeitung eines Ausgaberasters

Der oben gezeigte Dialog erlaubt die Einstellung eines Ausgaberasters. Dieses kann aus mehreren Intervallen bestehen. Jedes Intervall ist gekennzeichnet durch den Beginn, die Dauer und dem Zeitraster.

In Eingabezeile 1 wird der Name festgelegt. Dieser kann beliebig sein, sollte aber das Zeitraster

wiederspiegeln um so die Auswahl zu erleichtern. Das oben in der Abbildung gezeigte Ausgaberaster hat den Namen '1h' weil es Stundenzeitschritte hat.

In Feld 2 gibt man die Anzahl der vorhandenen Intervalle an. Meistens werden Ein-Intervall-Raster verwendet.

Dann kommen im Dialog zwei Listenelemente. Das Erste (grün umrandet - 3) dient der Eingabe der Intervallparameter. Im unteren Bereich (blau umrandet - 4) werden die Intervalle nur angezeigt.

Im Eingabebereich kann man folgende Parameter einstellen (immer Zahl - Leerzeichen - Einheit):

- Startzeitpunkt Beginn des Intervalls
- Simulationsdauer oder Endzeitpunkt
 - es muss nur einer dier beiden Werte angegeben werden
 - wenn bei Simulationsdauer 0 (beliebige Einheit) eingetragen wird gibt es keinen Endzeitpunt. Das Intervall geht immer bis zum Ende der Simulation
- Schrittweite

Das im obigen Bild gezeigte Ausgaberaster hat also folgende Eigenschaften:

- ein Intervall
- beginnt am Anfang der Simulation
- geht bis zum Ende der Simuation
- Ausgaben erfolgen jede Stunde

Ausgaberaster mit mehreren Intervallen sind bei sehr langen Simulationen sinnvoll um die Ausgabedatenmenge zu reduzieren. Die folgende Abbildung zeigt ein Beispiel:

ennidon				
Name:	Lang			
Anzahl der Intervalle	e: 3 🗘			
usgabezeitintervalle	und deren Ausgabe	ezeitschritte		
Definition der Interv	alle			
Format: Zeitliche Ab Hinweis: Eine Dauer	stände oder Interva r von 0 im letzten Int	lle im Format " <wert tervall bedeutet, dass</wert 	> <einheit>" eingebe dieses Intervall unbeg</einheit>	n. grenzt andauert.
	Interval #1	Interval #2	Interval #3	_
Startzeitpunkt	0 d			
Simulationsdauer	1 a	10 a	0 a	
Endzeitpunkt				
Schrittweite	1 h	10 d	1 h	
Berechnete Interval	le (berechnete Zeita	bstände werden in di	e Einheit des Startzeit;	ounktes konvertiert)
	Interval #1	Interval #2	Interval #3	
Startzeitpunkt	0 d	365 d	4015 d	
Simulationsdauer	1 a	10 a	unbegrenzt	
Endzeitpunkt	365 d	4015 d		
Schrittweite	1 h	10 d	1 h	

Abbildung 16. Ausgaberaster mit mehreren Intervallen

Dieses Ausgaberaster ist für Simulationen mit mehr als 12 Jahren gedacht. Im ersten Jahr erfolgt eine feinere Ausgabe (jede Stunde). In den nächsten 10 Jahren werden dann nur noch alle 10 Tage Ausgaben geschrieben. Zum Abschluß geht es wieder auf Stundenwerte zurück. Ab Intervall 2 werden keine Anfangszeitpunkte mehr gesetzt um sicherzustellen, dass der gesamte Simulationszeitraum abgedeckt ist. Man sollte im letzten Intervall als Dauer immer 0 angeben um zu vermeiden, dass zum Ende Ausgaben fehlen. Im unteren Listenfeld sind dann die berechneten Start- und Endzeitpunkte zur Kontrolle dargestellt.

3. Erstellen und Zuordnen

Eine Hilfe für die Erstellung von Ausgaben gibt es in den Versionen bis 6.1.1 nur im Assistenten für ein neues Projekt. Ansonsten können Ausgaben im Projekt einzeln erstellt werden.

3.1. Erstellung mit dem Projektassistenten

Wenn in DELPHIN ein neues Projekt erstellt wird, öffnet sich zunächst der Projektassistent. Dieser führt den Nutzer in mehreren Schritten zum neuen Projekt. Schritt 5 erlaubt die Auswahl von vordefinierten Ausgaben. Die Darstellung ist unterschiedlich für 1D und 2D Simulationen. Im Folgenden wird auf eine 1D Simulation eingegangen.

Rrojekterstellungsassistent 🗙	
Vordefinierte Ausgaben erstellen Ausgaben und zugehörige Ausgaberaster auswählen. Die Profil-Ausgaben werden automatisch der gesamten anfänglichen Geometrie zugewiesen.	
 Erstellung vordefinierter Ausgaben überspringen Vorgegebene Ausgaben (der gesamten Konstruktion zugewiesen) Temperaturprofil Luftfeuchteprofil Feuchtegehaltsprofil Integrale Feuchtemasse Vorgegebene Ausgaben für 1D-Konstruktionen (zugewiesen an Rände Oberflächentemperatur Relative Luftfeuchte an der Oberfläche Oberflächenwärmestrom (Gesamtwärmestrom) 	
Ausgaberaster Definiere Ausgabefrequenz für Felder/Profile: 1,5 d ~ Einzelwerte: 1 h ~	
< Zurück Abschließen Abbrechen	

Abbildung 17. Abschnitt für Ausgaben im Projektassistenten für eine 1D Konstruktion

Die Einstellung 1 erlaubt die Erstellung vordefinierter Ausgaben zu überspringen.

Im Abschnitt 2 werden Ausgaben, welche die gesamte Konstruktion betreffen, erzeugt. Es gibt 3 Profile (bzw. Felder) für Temperatur, relative Luftfeuchte und Feuchtegehalt sowie einen integralen Feuchtegehalt (Gesamtfeuchtegehalt). Der integrale Feuchtegehalt repräsentiert die Summe der Feuchtegehalte aller Elemente der Konstruktion (Wasser, Dampf, Eis). Diese 4 Ausgaben sollten bei jeder DELPHIN Simulation existieren. Besonders der integrale Feuchtegehalt ist wichtig um das langfristige Verhalten der Konstruktion darzustellen. Nimmt die Feuchte immer mehr zu oder pegelt sich der Feuchtegehalt nach einigen Jahren auf ein bestimmtes Niveau ein?

Der Bereich 3 erlaubt die Erstellung von Ausgaben für die Oberflächen (innen und außen). Es werden hier die Temperatur und relative Luftfeuchte an der Oberfläche und die Wärmestromdichte über die Ränder angeboten. Besonders wichtig ist hier meist Temperatur und relative Luftfeuchte an der inneren Oberfläche. Diese Daten können z.B. für dynamische Schimmelmodelle zum Nachweis des Mindestwärmeschutzes verwendet werden. Aus der Wärmestromdichte (am Besten auch Innen) kann man die Transmissionswärmeverluste ableiten. Nach Bestätigung dieses Dialoges fährt man mit dem Projektassistenten fort. Nach Abschluss wird das neue Projekt in DELPHIN angezeigt. Die Ausgabedaten sind meist rechts oben im Fenster dargestellt.

Ausgabeda	eien	
A + / D	- 医根 罕 計 斋	
Tem	perature profile	
Rela	ive humidity profile	
Mois	ure content profile	
Mois	ure content integral	
Surf	ace temperature - left side	
Surf	ice temperature - right side	
Surf	ice relative humidity - left side	
Surf	ice relative humidity - right side	
Surf	ice heat flux - left side	
Surf	uce heat flux - right side	
Materialie	Ausgabedateien Ausgaberaster	
Obernacher	(Mender	
- A - 30	15 222 19	

Abbildung 18. Liste der vom 1D Projektassistenten erstellten Ausgabedaten

Im Bild oben sieht man **schwarz und fett** sowie *grau und kursiv* dargestellte Daten. Die schwarz dargestellten Ausgaben sind erzeugt und bereits der Konstruktion zugewiesen. Durch Klick auf einen Datensatz wird die Zuweisung im Konstruktionsfenster hervorgehoben. Die ersten 4 Datensätze sind der gesamten Konstruktion zugewiesen.

Die folgenden 4 Ausgaben für Temperatur und relative Luftfeuchte an den Oberflächen sind zwar erzeugt aber noch nicht zugewiesen. Dies muss jetzt noch erfolgen (siehe Bild unten). Dazu markiert erst das entsprechende Randelement (1), danach die Ausgabe die man zuweisen möchte (2) und klickt zum Abschluß auf die grüne 'Zuweisen'-Schaltfläche (3).

Abbildung 19. Ausgabeliste mit markierter Ausgabe

Bei den Oberflächenausgaben wäre es in diesem Fall gut die Ausgabedateinamen anzupassen um klarer hervorzuheben was sie darstellen. Als Standard heißt z.B. die eine Oberflächentemperatur '*Oberflächentemperatur - linke Seite*'. Der linken Seite dieser Konstruktion ist die Oberfläche für Außen zugeordnet. Deswegen wäre es besser die Ausgabe in '*Oberflächentemperatur Außen*' umzubenennen.

Bei 2D Konstruktionen verändert sich der Abschnitt für Ausgaben im Projektassistenten insofern, dass die Ausgaben für die Oberflächen nicht mehr angeboten werden (siehe Bild unten). Das erfolgt weil bei 2D Konstruktionen keine klare Zuordnung der Oberflächen mehr existiert und adiabate Oberflächen möglich sind. Oberflächenausgaben müssen, wie alle anderen Ausgaben auch, später hinzugefügt werden.

🦾 Projekterste	ellungsassistent 🛛 🗙	
Vordefinierto Ausgaber automatis	e Ausgaben erstellen n und zugehörige Ausgaberaster auswählen. Die Profil-Ausgaben werden sch der gesamten anfänglichen Geometrie zugewiesen.	
Z H H	 Erstellung vordefinierter Ausgaben überspringen Vorgegebene Ausgaben (der gesamten Konstruktion zugewiesen) Temperaturprofil Luftfeuchteprofil Feuchtegehaltsprofil Integrale Feuchtemasse 	
E L P	Vorgegebene Ausgaben für 1D-Konstruktionen (zugewiesen an Rände Oberflächentemperatur Relative Luftfeuchte an der Oberfläche Oberflächenwärmestrom (Gesamtwärmestrom)	
	Ausgaberaster Definiere Ausgabefrequenz für	
	Einzelwerte:	
	< Zurück Abschließen Abbrechen	-

Abbildung 20. Abschnitt für Ausgaben im Projektassistenten für eine 2D Konstruktion

3.2. Direkte Ausgabenerstellung

Ausgaben können direkt durch Hinzufügen zur Ausgabenliste oder durch Kopieren bestehender Ausgaben erstellt werden. Zum Erzeugen von Ausgaben geht man wie folgt vor:

• Klick auf die Zufügen Schaltfläche der Ausgabenliste

Ausgabedateien	5	×
+ □ - ፼ 48 ₩ ₽ ₺ å		\mathbb{Z}
Temperaturprofil		
Lui feuchteprofil		
Feuch, gehaltsprofil		
Feuchtege altsintegral		
Oberflächente nperatur - linke Seite		
Oberflächentemperatur - rechte Seite		
Relative Luftfeuchte an der Oberfläche - linke Seite		
Relative Luftfeuchte an der Oberfläche - rechte Seite		
Oberflächenwärmestrom - linke Seite		
Oberflächenwärmestrom - rechte Seite		

Abbildung 21. Erzeugen einer neuen Ausgabe

• Konfiguration der Ausgabe im Format Dialog

🖉 Ausgabe 🗙 🗙
Definition
Dateiname (ohne Pfad): RH field
Auswahl der physikalischen Größe
Physikalische Größe: RelativeHumidity 2
Konvertierungs-/Berechnungsoptionen Werte in ausgewählten Elementen/Seiten mitteln oder integrieren, oder alle individuelle Zahlenwerte speichern?
Individuelle Werte jedes ausgewählten Elements oder jeder Seite [Single] 3
Zeitliche Integration/Mittlung?
Werte am Ausgabezeitpunkt schreiben [None]
Ausgabeeinheit für Werte: 5
Ausgabefrequenz
Ausgaberaster: 0.5 d 6 Bearbeiten 7
OK Abbrechen

Abbildung 22. Dialog zur Ausgabenformatierung

• Zuweisung der neuen Ausgabe zur Konstruktion (Zuweisung)

Statt eine Ausgabe neu zu erzeugen, kann man auch eine schon Bestehende kopieren und dann anpassen. Diese Vorgehensweise ist dann von Vorteil wenn die neue Ausgabe im Format (physikalische Größe, Formatierung, Zeitplan) ähnlich der schon Existierenden ist. Zum Kopieren wählt man eine bestehende Ausgabe und klickt dann auf die '*Kopieren*'-Schaltfläche.

Abbildung 23. Kopieren einer bestehenden Ausgabe

Besonders wichtig ist es einen neuen Namen zu definieren. In einem DELPHIN Projekt dürfen nie zwei Ausgaben mit dem gleichen Namen existieren, damit die Ausgabedateien unterschiedlich benannt sind. Falls das doch einmal der Fall seien sollte, wird beim Start der Simulation eine Fehlermeldung ausgegeben und die Berechnung abgebrochen.

4. Mögliche Ausgabegrößen

Diese Liste ist gültig für die Version 6.1.6. Ältere Versionen können weniger Ausgabegrößen enthalten.

4.1. Elementausgaben

4.1.1. Wärmetransport

Tabelle 1. Tabelle aller Feldausgaben für Wärmetransport

Nr.	Bezeichnung	Einheit	Erklärung
1	Temperatur	С	Temperatur
2	EnergyDensity	J/m ³	Energiedichte
Trans	sportparameter		
3	ThermalConductivity	W/mK	Wärmeleitfähigkeit allgemein bzw. in Richtung X
4	ThermalConductivity_Y	W/mK	Wärmeleitfähigkeit in Berechnungsrichtung Y
5	ThermalConductivity_Z	W/mK	Wärmeleitfähigkeit in Berechnungsrichtung Z

- die Energiedichte (2, innere Energie) ist die eigentliche Zustandsgröße.
- Die Temperatur (1) wird daraus über die material- und feuchteabhängige Wärmespeicherfunktion berechnet.
- Die Wärmeleitfähigkeit hängt von den im Material der gewählten Elemente gesetzten Parametern bzw. Funktionen ab (Feuchtegehalt, Temperatur). Die Leitfähigkeiten in Y- und Z-Richtung (4, 5) sind nur dann verschieden von der normalen Leitfähigkeit wenn das Material anisotrop parametrisiert ist.

4.1.2. Feuchtetransport

Tabelle 2. Tabelle aller Feldausgaben für Feuchtetransport

Nr.	Bezeichnung	Einheit	Erklärung
6	MoistureMassDensity	kg/m ³	Gesamtmassendichte von flüssigen Wasser, Wasserdampf und Eis
7	OverhygroscopicWaterMassD ensity	kg/m ³	Massendichte des überhygroskopischen Wassers (Kondensat) bezogen auf REV
8	LiquidMassDensity	kg/m ³	Massendichte des flüssigen Wassers bezogen auf REV
9	VaporMassDensity	kg/m ³	Massendichte der Gasphase bezogen auf REV
10	IntrinsicVaporMassDensity	kg/m ³ 3	Massendichte von Wasserdampf bezogen auf das Gasvolumen (absolute Luftfeuchte)
11	LiquidContent	m ³ /m ³	Volumenanteil der Flüssigphase bezogen auf das REV

Nr.	Bezeichnung	Einheit	Erklärung
12	MoistureMassByMass	kg/kg	Massendichte der gesamten Feuchte bezogen auf REV
13	DegreeOfSaturation	%	Prozentualer Anteil des mit Wasser und Eis gefüllten Porenraumes (ohne Eis genau wie LiquidVolumeRatio)
92	DegreeOfSaturationOver30	%	Prozentualer Anteil des mit Wasser und Eis gefüllten Porenraumes oberhalb 30%
14	LiquidVolumeRatio	%	Verhältnis des Volumens der Flüssigphase zur effektiven Sättigung (Sättigungsgrad)
15	RelativeHumidity	%	Relative Luftfeuchtigkeit
16	LiquidPressure	Ра	Druck der Flüssigphase
17	TotalLiquidPressurePotential	Ра	Flüssigwasserdruckpotential mit Gravitation
18	CapillaryPressure	Ра	Kapillardruck (negativ)
19	VaporPressure	Ра	Dampfdruck
Eisau	sgaben		
20	IceMassDensity	kg/m ³	Massendichte von Eis bezogen auf REV
21	IceVolumeRatio	%	Verhältnis des Eisvolumens zur effektiven Sättigung
91	IceCriteriaDIN4108_3	%	Um wieviel übersteigt der aktuelle Sättigungsgrad 30% wenn die Temperatur gleichzeitig ⇐ -5°C ist
Trans	sportparameter		
22	KirchhoffPotentialLiquidFlux	-	Kirchoff Potential, Integral der Flüssigwasserleitfähigkeit über dem Flüssigdruck
23	KirchhoffPotentialLiquidFlux_ Y	-	Kirchoff Potential, Integral der Flüssigwasserleitfähigkeit über dem Flüssigdruck in Berechnungsrichtung Y
24	KirchhoffPotentialLiquidFlux_ Z	-	Kirchoff Potential, Integral der Flüssigwasserleitfähigkeit über dem Flüssigdruck in Berechnungsrichtung Z
25	LiquidPermeability	S	Flüssigwasserleitfähigkeit allgemein bzw. in Richtung X

Nr.	Bezeichnung	Einheit	Erklärung
26	LiquidPermeability_Y	S	Flüssigwasserleitfähigkeit in Berechnungsrichtung Y
27	LiquidPermeability_Z	S	Flüssigwasserleitfähigkeit in Berechnungsrichtung Z
28	VaporPermeability	S	Wasserdampfleitfähigkeit allgemein bzw. in Richtung X
29	VaporPermeability_Y	S	Wasserdampfleitfähigkeit in Berechnungsrichtung Y
30	VaporPermeability_Z	S	Wasserdampfleitfähigkeit in Berechnungsrichtung Z

- Die Feuchtemassendichte (6) ist die primäre Zustandsgröße. Alle anderen Größen leiten sich davon ab.
 - die Umrechnung in die relative Lufteuchte und den Kapillardruck erfolgt über die Feuchtespeicherfunktion des Materials und ist unabhängig von der Temperatur
 - der Dampfdruck ergibt sich aus der relativen Luftfeuchte bei der Temperatur des Elementes
- Die Massendichte des übhygroskopischen Wassers (7) bezeichnte die Feuchtemenge, welche über dem hygroskopischen Grenzwert liegt. Standardmäßig ist das der Wassergehalt bei 95% relativer Luftfeuchte. Dieser Wert kann aber in den Optionen von DELPHIN geändert werden.
- Daten für Eis (20, 21) sind nur verfügbar wenn die Eisberechnung bei den DELPHIN Berechnungsoptionen eingeschalten ist.
- Der Sättigungsgrad (13) ist das Verhältnis von Gesamtfeuchtegehalt zu effektiver Sättigung des jeweiligen Materials. Er spielt besonders bei der Eisschadensbewertung nach WTA 6.5 bzw. DIN 4108-3 D eine Rolle.
- Der massenbezogene Feuchtegehalt (12) ist bei Bewertung von Holzbauteilen wichtig (DIN 68800-2).
- Ausgaben 91 und 92 gibt es seit Version 6.1.5

Alle Parameter des Feuchtetransportes sind nur verfügbar wenn die Feuchtebilanz bei den DELPHIN Berechnungsoptionen eingeschalten ist.

 Energiebilanzgleichun 	9	
Standard Anfangstempe	ratur:	4
O Verwende Wärmeleit	fähigkeit des trockenen Materials (LAMBDA)	
O Verwende Bemessun	gswert der Wärmeleitfähigkeit (LAMBDA_DESIGN)	
Berücksichtige Mater	ialfeuchte	
Standard Anfangsluftfeu	chte:	70
Standard Anfangsluftfeu Verwende Kirchhoff- Schwerkraft berücksi Eismodell (Gleichgew Verhindere Überfüllu	chte: Potential für Flüssigwassertransport chtigen ichtsmodell) verwenden ng	70
Standard Anfangsluftfeu Verwende Kirchhoff- Schwerkraft berücksi Eismodell (Gleichgew Verhindere Überfüllu Verwende strenge Pr	chte: Potential für Flüssigwassertransport chtigen ichtsmodell) verwenden ng üfung der Materialfunktionen	70
Standard Anfangsluftfeu Verwende Kirchhoff- Schwerkraft berücksi Eismodell (Gleichgew Verhindere Überfüllu Verwende strenge Pr Luftströmungsgleichu	chte: Potential für Flüssigwassertransport chtigen ichtsmodell) verwenden ng üfung der Materialfunktionen	70
Standard Anfangsluftfeu Verwende Kirchhoff- Schwerkraft berücksi Eismodell (Gleichgew Verhindere Überfüllu Verwende strenge Pr Luftströmungsgleichu Schwerkraft berücksi	chte: Potential für Flüssigwassertransport chtigen ichtsmodell) verwenden ng üfung der Materialfunktionen	70
Standard Anfangsluftfeu Verwende Kirchhoff-l Schwerkraft berücksi Eismodell (Gleichgew Verhindere Überfüllu Verwende strenge Pr Luftströmungsgleichu Schwerkraft berücksi Salzbilanzgleichungen	chte: Potential für Flüssigwassertransport chtigen ichtsmodell) verwenden ng üfung der Materialfunktionen	70

Abbildung 24. Berechnungsoptionen von DELPHIN

4.1.3. Lufttransport

Tabelle 3. Tabelle aller Feldausgaben für Lufttransport

Nr.	Bezeichnung	Einheit	Erklärung
90	GasMassDensity	kg/m3	Gesamtmassendichte des Gases
31	GasPressure	Ра	Gasdruck (Gesamtdruck)
32	GasPressureOffset	Ра	Gasdruckdifferenz zu atmosphärischen Druck (101325 Pa)
Transp	ortparameter		
33	AirPermeability	S	Luftpermeabilität allgemein bzw. in Richtung X
34	AirPermeability_Y	S	Luftpermeabilität in Berechnungsrichtung Y
35	AirPermeability_Z	S	Luftpermeabilität in Berechnungsrichtung Z
36	AirVelocityMagnitude	m/s	Mittlere Luftgeschwindigkeit

Wenn die Luftbilanz in DELPHIN aktiviert ist stehen die Ausgaben aus der obigen Tabelle zur Verfügung.

- Die Zustandsgröße für diesen Transport wäre die Gasmassendichte.
- Größe 36 (mittlere Luftgeschwindigkeit) erlaubt es die Verteilung der Strömungsgeschwindigkeit in einer Konstruktion als Feld auszugeben. Zur Berechnung dieser Größe werden die Flüsse über alle Seiten jedes Volumenelementes vektoriell gemittelt und daraus eine mittelere Geschwindigkeit bestimmt.

4.1.4. Salztransport

Tabelle 4. Tabelle aller Feldausgaben für Salztransport

Nr.	Bezeichnung	Einheit	Erklärung	
37	WaterActivity	-	Wasseraktivität	
38	Molality	mol/kg	Molalität der gelösten Salze	
39	IntrinsicSolutionDensity	kg/m ³	Dichte der Salzlösung bezogen auf das Flüssigvolumen	
40	SolutionMassDensity	kg/m ³	Massendichte der Salzlösung bezogen auf REV	
Transportparameter				
41	SaltDiffusionCoefficient	m²/s	Diffusionskoeffizient von Salz im porösen Material für Gradient der Molalität	

4.1.5. VOC Transport

Tabelle 5. Tabelle aller Feldausgaben für VOC Transport

Nr.	Bezeichnung	Einheit	Erklärung	
42	PartialPressureVOC	Ра	Partialdruck von VOC	
43	IntrinsicVOCDensity	kg/m ³	Spezifische VOC-Dichte in der Gasphase in kg(VOCg)/m3(gas)	
44	VOCMassDensityGas	kg/m ³	Massendichte der Gasphase von VOC	
45	VOCMassDensityAdsorb ed	kg/m ³	Massendichte der festen Phase von VOC	
Transportparameter				
46	VOCPermeability	S	VOC/Schadstoff-Leitfähigkeit in der Gasphase	

Der Salztransport- und VOC-Berechnungen erfordern zusätzliche Materialkennwerte die für viele Materialien nicht gegeben sind. Eine Anwendung sollte zur Zeit nur im wissenschaftlichen Bereich erfolgen.

4.2. Ausgaben für Flüsse

Tabelle 6. Tabelle aller Flussausgaben im Feld und am Rand

Nr.	Bezeichnung	Einheit	Erklärung
Wärme	transport		
47	FluxHeatConduction	W/m ²	Wärmefluss (Leitung)
48	TotalFluxHeat	$W/m^2 2$	Summe aller Wärmeströmen
Feuchte	etransport		
49	FluxEnthalpyLiquidCon vection	W/m ²	Enthalpiefluss für Flüssigwasserkonvektion
50	FluxEnthalpyVaporConv ection	W/m ²	Enthalpiefluss für Wasserdampfkonvektion
51	FluxEnthalpyVaporDiffu sion	W/m ²	Enthalpiefluss für Wasserdampfdiffusion
52	FluxLiquidConvection	kg/m²s	Konvektiver Massenfluss für flüssiges Wasser
53	FluxVaporDiffusion	kg/m ² s	Massenfluss für Wasserdampfdiffusion
54	TotalFluxMoisture	kg/m ² s	Sume aller Feuchteströme
Lufttra	nsport		
55	FluxEnthalpyAirConvect ion	W/m ²	Enthalpiefluss für Konvektion von trockener Luft
56	FluxVaporConvection	kg/m ² s	Massenfluss für Wasserdampfkonvektion
57	FluxAirConvection	kg/m²s	Konvektiver Massenfluss für trockene Luft
Salztra	nsport		
58	FluxEnthalpySaltDiffusi on	W/m ²	Enthalpiefluss für Salzdiffusion
59	FluxEnthalpySaltConvec tion	W/m ²	Enthalpiefluss für Salzkonvektion
60	FluxSaltDiffusion	kg/m ² s	Massenfluss für Salzdiffusion
61	FluxSaltConvection	kg/m ² s	Massenfluss für Salzkonvektion
VOC-Tra	ansport		
62	FluxVOCDiffusion	kg/m ² s	Massenfluss für VOC-Diffusion
63	FluxVOCConvection	kg/m ² s	Massenfluss für VOC-Konvektion

Die oben beschriebenen Ausgaben für Flüsse können sowohl am Rand als auch im Feld zugeordnet werden. Hierbei gilt es die Vorzeichenregel zu beachten:

- im Feld: positiv von links nach rechts, von unten nach oben, von vorne nach hinten
- am Rand: positiv in die Konstruktion hinein

Wenn eine Zuordnung Seiten sowohl am Rand als auch im Feld enthält, gilt die Zuordnungsregel für das Feld.

- Größe 48 enthält alle möglichen Wärmeflüsse, d.h. die Wärmeleitung selbst pluss aller vorhandenen Enthalpieflüsse.
- die Flüsse für Dampfkonvektion (50) entspricht dem Dampfanteil bei der Luftbewegung und ist somit nur bei Lufttransportberechnungen vorhanden

Nr.	Bezeichnung	Einheit	Erklärung		
Randbedingung kurzwellige Strahlung					
64	FluxShortWaveRadiatio nDirect	W/m ²	Direkte kurzwellige Solarstrahlung absorbiert von der Oberfläche		
65	FluxShortWaveRadiatio nDiffuse	W/m ²	Diffuse kurzwellige Solarstrahlung absorbiert von der Oberfläche		
66	FluxShortWaveRadiatio nGlobal	W/m ²	Globale kurzwellige Solarstrahlung absorbiert von der Oberfläche		
Randbedingung langwellige Strahlung					
67	FluxLongWaveRadiation	W/m ²	Langwellige Strahlung		
Randbedingung Schlagregen					
68	FluxRain	kg/m ² s	Regenstrom absorbiert von der Oberfläche		
69	FluxRainNormal	kg/m ² s	Regenstrom normal zur Oberfläche		
70	FluxEnthalpyRain	W/m ²	Regenstromentalpie		
71	FluxRainRunoffCooling	W/m ²	Wärmestrom zur Kühlung durch ablaufenden Regen		
Randbedingung Wärmetransport					
88	FluxHeatConductionGai n	W/m^2	Wärmestromdichte bei positivem Wärmestrom		
89	FluxHeatConductionLos s	W/m^2	Wärmestromdichte bei negativem Wärmestrom		

Tabelle 7. Tabelle aller Flussausgaben nur am Rand

Die oben beschriebenen Flussausgaben sind mit den genannten konkreten Randbedingungen verknüpft.

- die kurzwelligen Strahlungen (64 66) sind als Normalstrahlung der jeweiligen Oberfläche multipliziert mit dem Absorptionskoeffizienten zu verstehen.
- Größe 67 beinhaltet die gesamte langwelliger Strahlungsbilanz an der zugewiesenen Oberfläche (Einstrahlung - Emission)
- FluxRain (68) ist der vom Oberflächenelement aufgenommene Flüssigwasserstrom. Dabei wird geprüft wieviel Wasser auftrifft (69) und wieviel beim aktuellen Feuchtegehalt aufgenommen werden kann.
- FluxRainNormal (69) ist die normal zur Fläche auftreffende Schlagregenmenge berechnet nach dem Modell der ISO 15927-3
- FluxEnthalpyRain (70) ist der Enthalpiestrom verursacht von FluxRain
- Im Fall, dass nicht die gesamte auftreffende Regenmenge absorbiert werden kann, wird der Restanteil als Abfluss betrachtet. Die Enthalpie dieses Abflusses wird durch FluxRainRunoffCooling (71) dargestellt. Da die Temperatur des Regens meist niedriger als die Oberflächentemperatur ist, entsteht ein Kühlungseffekt.
- Ausgaben 88 und 89 gibt es seit Version 6.1.6

4.3. Ausgaben für Quellen und Senken

Tahelle 8	Tahelle	aller	Ausoahen	fiir	Ouellen	und Senken
<i>Tupelle</i> o.	Tubelle	uller	Ausguben	jui	Queilen	unu senken

Nr.	Bezeichnung	Einheit	Erklärung			
Einfach	Einfache Energiequelle					
72	ThermalLoad	W/m ³	Quelle: Wärmelast/Wärmequelle			
Langwe	Langwelliger Strahlungsaustausch in einem Hohlraum					
73	LongWaveRadiationLoa d	W/m ³	Quelle: Wärmelast durch langwelligen Strahlungsaustausch			
Luftaustausch mit Umgebungsluft						
74	ThermalLoadAirChange	W/m ³	Quelle: Wärmelast durch Luftaustausch			
75	MoistureLoadAirChange	kg/m³s	Quelle: Feuchtelast (Dampf) durch Luftaustausch			
76	MoistureEnthalpyAirCha nge	W/m ³	Quelle: Enthalpie durch Feuchtelast bei Luftaustausch			
Feuchtequelle durch Luftströmung infolge Luftundichtigkeit nach WTA 6.2						
77	MoistureLoadWTAConv ection	kg/m ³ s	Quelle: Enthalpie durch Feuchtelast bei Luftaustausch			
78	MoistureEnthalpyWTAC onvection	W/m ³	Quelle: Enthalpie von Feuchtelast durch konvektive Quelle nach WTA 6.2			

Nr.	Bezeichnung	Einheit	Erklärung		
Einfache Feuchtequelle					
79	MoistureLoad	kg/m ³ s	Quelle: Feuchtelast/Flüssigwasserquelle		
80	MoistureLoadEnthalpy	W/m ³	Quelle: Enthalpie von Feuchtelast/Flüssigwasserquelle		
81	SaltProductionRateBoun dWater	kg/m ³ s	Quelle: Massenproduktionsrate von gebundenen Wasser von gelöstem Salz		
82	SaltProductionRateEnth alpy	W/m ³	Quelle: Enthalpie infolge isothermer Lösung bzw. Kristallisation von Salz		
Wasserfluss in eine Richtung durch die Konstruktion					
83	ThermalLoadGroundWa terFlow	W/m ³	Quelle: Thermische Last/Wärmequelle aufgrund von eingeleitetem Grundwasser		
Einfache VOC/Schadstoffquelle					
84	VOCAdsorptionRate	kg/m³s	Quelle: Massenproduktionsrate der festen Phase von VOC durch Kondensation aus der Gasphase		
85	VOCDesorptionRate	kg/m³s	Quelle: Massenproduktionsrate der Gasphase von VOC durch Emission von der festen Phase		
86	VOCLoadAirChange	kg/m³s	Quelle: VOC Massenkonzentrationsquelle infolge Luftaustausch		
87	VOCSource	mg/m ³ s	Quelle: VOC Massenproduktionsrate aus vorgegebener Emissionsquelle		

Alle oben beschriebenen Quellausgaben werden durch die zugewiesenen genannten Quellmodelle bestimmt. Die Zuweisung zur Konstruktion muss zu Volumenelementen erfolgen, zu denen auch ein Quellmodell zugewiesen ist. Jede Zuweisung definiert dabei eigene Ausgaben.

5. Welche Ausgaben werden benötigt?

Bei der Erstellung eines DELPHIN Projektes stellt sich immer die Frage welche Ausgaben benötigt werden. Letzlich ergibt sich die Lösung aus der Aufgabenstellung selbst.

Warum führe ich diese Berechnung durch?

Welche Aussagen will ich treffen?

Die Standardausgaben sollte immer vorhanden sein. Falls das Projekt mittels des Projektassistenten erzeugt wurde, sind sie meist vorhanden (falls nicht abgewählt).

Für alle weiteren Ausgaben muss man sich überlegen welche Aussage getroffen werden soll. Meistens sollen Berechnungen ja Aussagen über die Funktionsfähigkeit einer Konstruktion treffen. Dazu kann man folgende Fragen stellen:

- Wie verhält sich die feuchte im Verlauf der Zeit*
 - Feuchtemassenintegral der gesamten Konstruktion
- Welche Schäden können bei dieser Konstruktion auftreten?
 - Welche Ausgaben benötige ich um einen Schadensfall zu ermitteln?
 - Wo, in der Konstruktion, könnte dieser Schaden auftreten?

Die häufigsten Schadensbeurteilungen sind:

- Schimmel an der inneren Oberfläche
 - mittlere Temperatur (1) und Luftfeuchte (15) an der Stelle der Oberfläche wo Schimmel zu erwarten ist
 - im PostProc 2 stehen verschiedene Schimmelmodelle zu Verfügung (Isoplethen, Viitanen)
- Algenbildung an der Außenseite
 - $\circ~$ mittlere Temperatur (1) und Luftfeuchte (15) an einer Stelle an der Außenseite
 - im PostProc 2 existiert ein experimentelles Algenmodell für Ziegelfassaden
 - Test auf längeren Zeiträumen mit hohen Oberflächenfeuchten bei Temperaturen über 0°C können einen Hinweis auf Algenbildung liefern
- holzschädigende Pilze bei Holzbauteilen
 - mittlere Temperatur (1) und Luftfeuchte (15) an allen Positionen bei Holzbauteilen an denen ein Schaden erwartet werden kann
 - das Gebiet der Zuweisung nicht zu groß wählen um Fehler durch Mittelwertbildung zu vermeiden
 - für Worst-Case Betrachtung kann hier statt Mittelwert auch Maximum (Luftfeuchte) gewählt werden
 - im PostProc 2 stehen 2 verschiedene Schadensmodell zur Auswahl (WTA 6.8, Viitanen)
 - massenbezogener Feuchtegehalt (12) im Holz
 - kann zur Bewertung nach DIN 68800-2 sowie WTA 6.8 verwendet werden
 - der Bereich sollte wie bei Temperatur und Luftfeuchte gewählt werden
- Eisbildung in der Konstruktion
 - für das Schadensmodell nach DIN 4108-3 D.7.5 benötigt man den Sättigungsgrad (13)

und die Temperatur (1) in einem 1x1cm² großen Gebiet (2D Berechnung)

- hierfür braucht Eisberechnung nicht aktiviert zu sein
- weitere Möglichkeiten sind die Ausgabe des Poren-Volumenverhältnisses für Eis sowie der Eisgehalt (kein Schadensmodell vorhanden)
 - hierfür muß Eisberechnung aktiviert sein

Für weitere mögliche Feuchteschäden (Korrosion, Quelle/Schwinden, Auflösung etc.) existieren noch keine guten Schadensmodelle.