
FMI Co-Simulation between 2D/3D component models and HVAC/control
models

Andreas Nicolai1, Andreas Söhnchen1

1Institut für Bauklimatik, Fakultät Architektur, TU Dresden, Dresden, Germany

Abstract
Detailed construction and building component mod-
els, including hygrothermal porous material transport
models, can be used to model a large variaty of mod-
ern energy transfer and storage systems. These in-
clude heated concrete slabs, shallow soil heat collec-
tors, heated wall layers, combined photovoltaic and
construction panels etc. The interaction with con-
nected HVAC systems/energy distribution systems
and/or control models is, however, often limited in
such tools. With the use of the FMI runtime tool cou-
pling standard, it is possible to connect detailed com-
ponent models with other simulation tools. This is il-
lustrated in the article using the hygrothermal trans-
port model DELPHIN. The article first describes the
FMI co-simulation interface of the tool. Then, the
generation of control model FMUs is shown using
open-source technology for FMI generation (Open-
Modelica, FMICodeGenerator). Using MASTERSIM
as co-simulation master, the setup of an applica-
tion case (heated concrete slab) is illustrated, includ-
ing two ways of manually generating control model
FMUs.

Key Innovations
• FMI interface of heat and mass transport model
• Illustration of workflow and FMU generation

technology

Practical Implications
This article provides practitioners with a detailed
overview of the FMI technoligy. It provides a clear
description on how to manually create own FMUs
and interface them with existing, complex simulation
models.

Introduction
Simulation tools with flexible parametrisation and
physically fundamental modeling can be used in ver-
satile ways to model different things from quite
different physical/engineering domains. Two ex-
amples: the calculation toolkit COMSOL Multi-
Physics (COMSOL, 2021) includes an own mathe-

matical language to express model variants and pro-
vide parameters, centered around a solution engine
for partial differential equations in 2D/3D with FEM.
The Modelica language (MA, 2021c) and its runtime
environments/solvers permit users to express very dif-
ferent physical models. Numerous other generic mod-
eling languages/tools exist, that all strive to be usable
by a very broad target audience and for a many dif-
ferent applications. Each of the tools is specialised
in some way. For example, Modelica is very good at
expressing coupled non-linear problems involving sys-
tems of differential and algebraic equations (DAE),
yet no partial differential equations (PDE). COM-
SOL, on the other hand, is centered around solving
PDEs, yet the included language cannot express all
that fine detail that’s possible with Modelica and sim-
ilar modeling languages. In practical applications,
often one tool is not sufficient, yet a combination of
multiple tools with runtime data exchange is needed.
The FMI Standard
Before the MODELISAR project (Clauß et al., 2011)
and the development of the FMI standard, interfacing
of dynamic calculation tools at runtime has been done
mostly using propriatory bilateral interfaces, or us-
ing some kind of dedicated middleware (see article on
the middleware CoSimA+ (Stratbücker et al., 2011)
which contains a review). The Functional Mock-Up
Interface (FMI) is an abstract description of what is
being exchanged, when and how, see Blochwitz et al.
(2011) for an introduction. It boils down to:

• different simulation models/tools are packaged
into Functional Mock-Up Units (FMUs),

• these FMUs are collectively simulated by a mas-
ter program, that can either integrate all mod-
els into one big common solver for all exposed
differential equations (a mode called ModelEx-
change), or by orchestrating distributed integra-
tion and data exchange at dedicated time points
(this mode is called Co-Simulation).

The packaging of a model into an FMU involves cre-
ating a model-specific description file (XML format,
named modelDescription.xml), a runtime library
and additional model specific resources. These are all

placed in a directory structure, zipped and renamed
to have a .fmu file extension. Details of this proce-
dure are described in the FMI standard documents
(MA, 2021a). Creating such an FMU manually is
rather complicated, especially programming the run-
time library, but there are toolkits that simplify the
process (see discussion below).
The process of running the coupled simulation is han-
dled by simulation master programs. The authors
detailed discussion of the pros and cons of either ap-
proach (ModelExchange vs. Co-Simulation), can be
found in section 6/Activity 1.2 of the IEA Annex60
report (Wetter and van Treeck, 2017).
Specialised simulation models with FMI sup-
port
Besides generic simulation tool kits and modeling lan-
guages, the vast majority of dynamic simulation tools
are specialised to some application case. Since the
scope is limited, parameter choices and mathematical
formulation are known and fixed, these tools can bet-
ter optimise their calculation kernels and may almost
always achieve (much) better performance than gen-
eral purpose modeling environments. Also, and that
is even more important for engineering users, these
tools can provide dedicated user interfaces which
simplify model setup significantly, and provide thor-
ough input data checking. Consequently, these types
of tools are found way more frequently in practical
use than generic/multi-purpose modeling tool kits as
mentioned above.
The DELPHIN simulation model
The hygrothermal building component/construction
detail calculation software DELPHIN (Nicolai, 2020)
is one example for such dedicated simulation pro-
grams. It is specialised for efficiently solving the
highly nonlinear partial differential equation sys-
tems used to express coupled heat and mass trans-
port problems in 2D/3D geometries (see Nicolai and
Ruisinger (2020) for a discussion on implemented al-
gorithms and numerical parameter optimisation).
Despite the specialisation on building construction
details the software includes a very general physical
model formulation and offers numerous ways to spec-
ify boundary conditions, sources/sinks and auxiliary
models. This allows DELPHIN to be used for quite
different application cases, such as:

• modeling of soil energy collectors,
• active (heated) carbon-concrete slabs,
• thermal analysis of combined photovoltaic/ther-

mal collectors,
• heating/cooling dynamics of bio-reactors (and

other equipment),
• soil ice storage, and many more.

The recent use of DELPHIN for dynamic equipmen-
t/system modeling resulted in an increased demand
for control model integration. Given the large num-

├── binaries
│ ├── win32
│ │ └── model.dll
│ ├── win64
│ │ └── model.dll
│ ├── darwin64
│ │ └── model.dylib
│ └── linux64
│ └── model.so
├── modelDescription.xml
└── resources
 ├── climate
 │ └── xxx.c6b
 ├── materials
 │ ├── xxx.m6
 │ └── yyy.m6
 └── Project.d6p

Figure 1: DELPHIN FMU directory layout

ber of different control strategies and parameters, it
is not meaningful to integrate these into the software
and native DELPHIN calculation model itself. Also,
from the user’s point of view, flexible adjustment of
control model equations and algorithms should not
be slowed down by implementation time and soft-
ware release schedules. Hence, we opted for a FMI
runtime-coupling of flexible control models and stan-
dard DELPHIN calculation functionality.

DELPHIN FMI functionality
The DELPHIN model separates functionality and
parametrisation through use of project and resource
files (climate data files, material data files). The same
principle applies to FMUs, where the runtime library
is the same for all models, and only the embedded
project parameters change. Hence, the directory lay-
out of DELPHIN FMUs (see Fig. 1) is always the
same.
The subdirectory resources/climate contains the
used climate data file (c6b/wac/epw) and other
referenced time series data files (tsv/ccd). The
resources/materials subdirectory holds all materi-
als referenced by the project. The file Project.d6p is
the renamed project file - within the FMU the project
file always has the name Project.d6p. The shared
library files are placed in the respective subdirs of
binaries. Note, on Mac (darwin) and Linux there
are no 32-bit variants of DELPHIN, and for Win-
dows, the 32-bit variant is only used for compatibil-
ity with older 32-bit FMU exporting tools. Auxilliary
shared library files (dll) are placed in the win32 and
win64 subdirectories as needed. Following the FMI
specification, the file name of the shared library files
("model" in Fig. 1) matches the FMU name. When
exporting the FMU the user has the choice of embed-
ding only the binary library for the current platform
(hereby reducing FMU file size), or for all platforms,
which will then become a cross-platform FMU.

The separation of model functionality and parame-
ters permits powerful optimisation/parameter analy-
sis variants. First, the FMU is extracted somewhere
to create the reference/starting point of the varia-
tion. Then a script might be run that (1) modifies
project parameters, (2) zips the directory structure
into the FMU, (3) copies the FMU into the target di-
rectory with the FMI coupling scenario, (4) executes
the coupled simulation and (5) evaluates results and
generates input for the next iteration.
The DELPHIN FMU currently supports FMI for Co-
Simulation Versions 1.0 and 2.0, the latter with the
capability of storing/restoring the FMU state (this al-
lows iterative co-simulation master algorithms (Nico-
lai, 2018)).
Parameters, Input and Output Variables
Since all project-related parameters are contained in
the embedded project file and resources, the exported
interface defines only one parameter: ResultsRootDir .
This optional parameter can be used to indicate
where DELPHIN shall write its own output data.
Generally, for FMUs solving PDE, it is not mean-
ingful to pipe fields of data (e.g. temperature or
moisture distributions) over the FMI interface as
scalar variables (since data fields are not supported
by FMI standard so far). Also, performance-wise it is
much more meaningful to write dedicated output file
in formats suitable for post-processing applications.
Hence, the DELPHIN FMU writes its result data files
exactly as in a stand-alone run, only in the directory
indicated by the ResultsRootDir string parameter.
The input variables accepted by DELPHIN are al-
ways of type fmiReal (double-precision floating point)
and continuous variables. They are generated for all
time series input data (climate conditions) that are
defined as specific FMI input variable. The names
of these variables are always automatically generated
based on the condition names and type prefix. For ex-
ample, a climate condition named “ExternalTemper-
ature” will generate an FMI input variable name “Cli-
mateCondition.ExternalTemperature”, which is ex-
pected always in default SI unit of the respective
physical quantity (degree Centigrade for tempera-
tures, Watt for heat fluxes, etc.). To avoid errors, this
unit is also written in the modelDescription.xml
file. Each input variable needs to be given a default
value. Using this default value the model behavior
can be easily tested in stand-alone runs before being
exported. This is particularly useful for engineering
workflows, since it speeds up the process of generat-
ing a correctly parameterised FMU and co-simulation
scenario.
Output variables are also automatically generated for
all defined and used scalar output quantities. This
can be sensor values, or integral flux quantities, or
mean values of a quantity in a certain domain of the
simulation model. Any output that yields a single

Figure 2: Example model export with one input vari-
able, two regular outputs and further auxilliary model
outputs

value per time point will be exported as an output
variable. This way it is possible to export virtually
all calculation results (and interium) quantities over
the FMI interface.
Lastly, some models may generate auxilliary scalar
outputs. For example, the pipe collected model (see
below) will provide the outflow media temperature
and energy loss/gain over the entire pipe. These are
also scalar variables and exported over the model in-
terface.
The interface variables are summarized as part of the
export process, whereby the auxilliary scalar outputs
are highlighted in yellow (see Fig. 2).

Implementation details related to the
variable time-step integrator in the
DELPHIN FMU slave
The use of variable step sizes in the FMU slave and
co-simulation algorithm needs special consideration.
For solvers of PDE problems variable time-step inte-
grators can reduce simulation time substantially. The
FMI standard explicitely provides co-simulation mas-
ters with the ability to use variable step sizes, pro-
vided the slaves are compatible with that (FMI fea-
ture canHandleVariableCommunicationStepSize).
Consider Fig. 3 where the internal steps of the slave
(top line) and the communication intervals of the co-
simulation master (bottom line) are illustrated. In
between communication intervals the master can ex-
change FMI input variables. Hence, when the inte-
gration commences again inside the slave, it has to
begin exactly at the start of the next communication
interval.
This is achieved by shortening the time step at the
end of the communication interval, sometimes sub-
stantially. This not only incurs more steps to be taken

FMI Communication Interval

(3)
(2)

(1)

Figure 3: Illustration of variable step synchronisa-
tion and the need to artificially shorten steps to hit
communication interval end points; (1) regular slave
integration steps, (2) step that would be taken with-
out FMI communication, (3) stop-point inserted to
hit communicatino end point exactly

by the FMU slave’s integrator, but also more over-
head for Jacobian matrix update/factorisation. In-
deed, drastic changes in time step sizes require a Jaco-
bian matrix update which could otherwise be re-used
in modified Newton schemes. In the DELPHIN FMU
the use of iterative Krylov-subspace solvers somewhat
reduces this penalty at each communication interval
end, though the overhead of updating/factorising the
ILU-preconditioner remains.
Output handling
FMUs with large number of outputs (as arise from
PDE simulations) usually write these outputs to ded-
icated output files. The FMI standard does not pro-
vide any means to tell the slave a suitable target di-
rectory for these outputs. Hence, the usual procedure
is to write outputs in a hard-coded directory or cur-
rent working directory. However, this approach is not
meaningful when using the same FMU slave multiple
times in the same co-simulation scenario. This, how-
ever, can be a useful feature, especially for DELPHIN
FMUs, e.g. when instantiating slaves for several soil
heat collector fields.
MASTERSIM solves the problem of the slave-specific
output directories by supporting a special string-type
FMU input variable called ResultsRootDir. When-
ever a slave supports such a variable, MASTERSIM
will provide a unique, writeable, slave-specific path
for the FMU to use (see Nicolai (2021a), online man-
ual, section Directory "slaves"). In turn, the DEL-
PHIN FMU does generate its output files in the pro-
vided directory.
Lastly, special care needs to be taken when us-
ing FMUs with own output files in an iterative co-
simulation algorithm. When repeating a commu-
nication interval, it is possible that DELPHIN had
appended outputs to files already in the first run
through the communication interval. When repeat-
ing the communication interval, there will be outputs
added again with the same time stamps, yet slightly
modified content to the output files. Even when com-

Figure 4: Simulation model of the elevated concrete
drive way. Sensors are placed at the surface of the
drive way, where the frost-free condition is evaluated.

munication step sizes are much smaller than output
steps, the problem remains since variably-sized com-
munication steps are usually not synchronized with
the output schedules in FMU slaves. Caching out-
puts until a communication interval is completed (i.e.
no further iterations are made) is not meaningful for
PDE-type FMUs, since output data tends to be large
and a cache would potentially occupy much memory
storage.
Instead, we recommend the following pragmatic ap-
proach to obtain output files with consecutive outputs
in the DELPHIN d6o files:

• in a script, read the output file and in each data
line extract the first number (the time stamp)

• process file back-to-front and drop all lines whose
time stamp is larger than or equal to the time
stamp in the previously processed line

Application Example
Heating concrete driveways to prevent them from
freezing/avoid snow cover may require significant
amount of electric energy. The planning of such sys-
tems currently involves answering the following ques-
tions: where shall the heating elements be placed, and
how much constant power is needed. Indeed, the cur-
rent approach of determining necessary heating power
involves running a steady-state thermal bridge calcu-
lation with constant cold boundary conditions. Op-
tionally, an additional energy demand for freezing of
snow pack / falling snow is considered.
While this approach gives a worst case assumption,
it also yields the largest dimensioning for the heating
elements and gives a constant heating power during
operation, that is likely to be very much on the safe
side and thus waste a lot of energy.
Steady-state analysis
Fig. 4 shows an example of a concrete drive way with
5 distinct heating elements (pipes approximated with
square cross section). There are two of these 1m wide
slabs side by side, each supporting one side of the
train car running on top. Both have the same cross
section, so analysis of one supporting concrete slab is
sufficient.

Figure 5: Temperature distribution obtained in the
steady-state calculation with 300 W/m (per meter
length of the drive way) uniformely distributed into
all 5 heating elements.

The steady state analysis with worst-case constant
conditions and heating power of 300 W/m (W per
length of driveway) yields a temperature distribution
as shown in Fig. 5. Ambient conditions were fixed at
-10°C with increased exchange coefficient due to ele-
vated position of the driveway. The simulation was
done using different uniform heating powers, mod-
eled as energy source inside the heating pipes. For
example, 300 W/m devided by total heating element
cross section of 5x0.02x0.02 m2 gives a volumentric
energy source of 150 kW/m3. This power was found
to be sufficient to keep the surface temperature above
2 °C, which was the selected safe limit for operation.
Given the length of the driveway (several 100 m) a
significant amount of heating power is needed.
Obviously, in Germany we do not have -10 °C con-
stant over several months, so for the most time we
may be able to save energy by using less heating
power. However, we need to define a meaningful con-
trol strategy, define sensor points and quantify the
savings in energy vs. risk of unsuitable conditions
during operation hours. All these variants can be
tested in a dynamic simulation, where the concrete
slab itself is modeled in a DELPHIN FMU and the
control logic is modeled in a control model FMU.
FMUs
Concrete slab FMU

The simulation model of the concrete slab was ex-
ported from DELPHIN with the aforementioned ex-
port procedure. The FMU has two output variables
TemperatureSensor_1 and TemperatureSensor_2
for the two sensors at the top of the concrete slab.
For control purposes only sensor 2 is being used,
that is placed between the heating elements and thus
shows always the lower temperature. The volumetric
heat source (energy production rate) is the only input
variable EnergySourceHeating of the ConcreteSlab
FMU.

loadModel(Modelica, {"3.2.1"}); getErrorString();
loadModel(Modelica_DeviceDrivers); getErrorString();
setLanguageStandard("3.3"); getErrorString();
loadFile("HeatingControl.mo"); getErrorString();
setDebugFlags("backenddaeinfo");getErrorString();
translateModelFMU(HeatingControl, fmuType="cs",
version=”2.0”); getErrorString();

Figure 6: Example OpenModelica script
createFMU.mos to generate an FMU. The first
three lines can be omitted, if no external libraries are
needed.

Modelica control model FMU

For the implementation of a typical control model
we investigated two possibilities: a) use of Modelica,
specifically the OpenModelica environment, b) writ-
ing our own control model FMU in C/C++.
Defining a control model in OpenModelica works
pretty much like in any other Modelica development
environment. The export of the FMU, however, is
best done with a script. A simple approach is the use
of the OMShell, with the commands:
>> loadFile("/path/to/HeatingControl.mo")

>> translateModelFMU(HeatingControl, fmuType="cs")

The translateModelFMU() function generates the
FMU by default in a temporary directory and prints
out the export path. By default, if specifying cs (Co-
Simulation) as fmuType it will export an FMU with
support for FMI for Co-Simulation version 1.0. If
FMI 2.0 features are needed, you need to export the
model with:
>> translateModelFMU(HeatingControl, fmuType="cs",

version="2.0")

For practical purposes it is often much more conve-
nient to use a scripted solution, hereby creating an
OpenModelica compiler script, say createFMU.mos
(Fig. 6) and running it with the command line:
> omc createFMU.mos

The FMU export generates automatically input and
output variables based on the variable declaration
prefixes input and output, as well as parameters. For
example, the minimalistic controller (Listing 1) will
have one FMU input variable TSurface, one output
PHeating, and two parameters.

Listing 1: Minimalistic proportional controller model
with limits on temperature and heating power
model HeatingControl

// input temperature in K
input Real Tsurface;
// output energy source in W/m3
output Real PHeating;
// effective cross section area in m2
parameter Real area = 0.02*0.02*5;
// max. available power in W/m
parameter Real MaxPower = 300;
// required heating power in W/m
Real HeatingPower;

equation
// simple p-controller for this example
// Compute heating power in W/m,
// MaxPower at 1K difference

Figure 7: Variable definition in FMI code generator

HeatingPower = max(0, MaxPower *(276.15 - Tsurface));
// Compute energy source in W/m3
PHeating = min(HeatingPower , MaxPower)/area;

end HeatingControl;

Custom control model FMU

As an alternative to Modelica it is also possible to
handcraft an FMU, hereby creating very small and
fast models. For simple models such as this heating
model, the implementation effort should be minimal.
However, the C interface required by the FMI stan-
dard is far from trivial to implement. Hence, the au-
thor has developed a small open-source toolkit to gen-
erate a barebone of an FMU where only the physical
equations need to be inserted. The toolkit FMICode-
Generator (Nicolai, 2021b) is a small Python script
that collects information about the interface vari-
ables (inputs, outputs, parameters and their prop-
erties) and then generates a directory structure with
compile-ready code. The (engineering) user now only
has to fill in the code lines with the actual physics,
run a batch/shell script and obtains a fully functional
FMU.
For the example above, the procedure is rather sim-
ple:

1. download the FMICodeGenerator repository
from github

2. start the code generator wizard (the python script
main.py) and specify variables as shown in Fig. 7

3. finish wizard and generate the FMU source direc-
tory

4. add model equations
5. generate FMU

Step 4 requires editing the generated source code, in
this case a single file HeatingControl.cpp. The file is
prepared so that access to input variables and output
variables is very simple. All that’s needed is to insert
code, very similar to the Modelica code above, into
the marked section of the code (see listing 2).

Listing 2: Own model implementation inside
HeatingControl::integrateTo() of the generated
source code
// get input variables
double Tsurface = m_realVar[FMI_INPUT_Tsurface];
double MaxPower = m_realVar[FMI_PARA_MaxPower];
double area = m_realVar[FMI_PARA_area];

// *** own code starts here ***

// Compute heating power in W/m
double HeatingPower =

std::max(0.0, MaxPower *(276.15 - Tsurface));

// Compute energy source in W/m3
double PHeating =

std::min(HeatingPower , MaxPower)/area;

// output variables
m_realVar[FMI_OUTPUT_PHeating] = PHeating;

// *** own code ends here ***

Step 5 in the generation process involves simply call-
ing the ready-made scripts build.bat or build.sh
(on Mac/Linux) and deployment scripts deploy.bat,
deploy.sh or deployMac.sh, depending on the plat-
form.
Co-Simulation setup
There are numerous co-simulation master programs
available (see cross-check list (MA, 2021b)). We
choose the open-source master program MASTER-
SIM (Nicolai, 2018). It implements all needed al-
gorithms (including iterative master algorithms, if
needed), and provides a good separation between co-
simulation scenario setup and the actual FMU. This
is particularly useful for engineering workflows that
involve parameter variation/sensitivity studies (see
Nicolai (2021a), online manual, section Workflows).
Also, it can be scripted very well.
The co-simulation setup involves essentially 3 steps:

• import of the FMUs and analysis of the interfaces

• definition of FMU connections (input - output
variable associations)

• setting simulation and algorithmic parameters

For this example only the ConcreteSlab.fmu (DEL-
PHIN model) and the HeatingControl.fmu need
to be imported. The connection of the FMUs is
rather simple: TemperatureSensor_2 output from
the ConcreteSlab fmu feeds into TSurface from
HeatingControl fmu. And PHeating feeds into Cli-
mateCond.EnergySourceHeating (see Fig. 8).

Unit conversions

Particular care has to be taken when connecting vari-
ables with different units. Here, the surface tem-
perature is exported in °C, but expected in Kelvin
by the Modelica control model FMU. Even if FMUs
export units alongside the variable declarations, an
automatic value conversion is tricky, if only because
of different naming conventions for units in differ-
ent simulation tools. Hence, our recommendation is
to document units of variables clearly and configure
unit conversions manually when setting up the co-
simulation. In MASTERSIM this is done by assign-
ing connection conversion properties. Here we define
an offset parameter 273.15 to convert from C to K
when computing the value to pass to HeatingCon-
trol.TSurface.

Figure 8: Co-Simulation scenario schematics in MASTERSIM

Ambient temperature

Energy source

Surface temperature

Te
m

pe
ra

tu
re

 [C
]

-10

-5

0

5

10

He
at

in
g

po
we

r [
W

/m
]

0

200

400

600

800

1000

14. Jan 28. Jan 11. Feb 25. Feb 11. Mar 25. Mar

Figure 9: Temperatures and controlled energy source
for the first 3 months of the transient simulation

Co-Simulation algorithms and parameters

For most applications, a simple non-iterating Gauss-
Seidel algorithm with fixed step sizes is a good start-
ing choice. We selected constant 10 min data ex-
change intervals and ran the simulation for the first
cold months of the year. Indeed, as shown in Fig. 9,
the heating power is adjusted based on the surface
temperature computed with the DELPHIN model.

Performance considerations
A Co-Simulation is generally slower than a stand-
alone simulation, not only because of the additional
overhead of transferring data from one FMU to the
next. Also, the feedback of one model onto the other
may be causing more iterations, potentially more con-
vergence and error test failures and result generally
in more steps to take. Furthermore, the requirement
to stop an integration at the end of each communica-
tion interval increases the work for variable step size
solvers, who cannot optimally adjust time steps any-
longer. In the test above, the performance overhead is
significant: a stand-alone DELPHIN simulation took
about 2 minutes for 4 months of calculation, whereas
the coupled simulation (with a 10 min communica-

tion step) took about 15 min. Admittingly, this is an
unfair comparison because the stand-alone model did
not include a controlled heating source.
It is generally believed that using a larger communica-
tion interval size will increase performance, yet reduce
accuracy. Surprisingly, the first assumption does not
always hold when it comes to error-controlled, adap-
tive time step integrators, such as used in DELPHIN.
It turns out that taking larger communication steps
with a type of feedback control as used in this exam-
ple will in fact lead sometimes to longer simulations.
The longer a communication step lasts, the stronger
are the step-changes of the computed heating pow-
ers passed on to the DELPHIN model. These large
jumps (in the first derivative of the energy balances)
will lead to many error test failures and cause the
solver to effectively restart each communication in-
terval with very small time steps. In a variation test
using 10, 20 and 30 min as communication step size,
the simulation lasted 15 min, 19 min and 17 min,
respectively. Alas, this observation is very problem
dependent and thus individual testing of the optimal
communication step is advised.
Fortunately, varying communication step sizes in a
meaningful size range (i.e. at least smaller than the
typical expected frequency of input signal changes)
did not impact simulation results much. This is il-
lustrated in Fig. 10, which shows a comparison of
computed surface temperatures for three different co-
simulation step sizes for the first few hours. The com-
munication step size effectively determines, how fast
the heating control can react on changes in the sen-
sor temperature. As usual for delay-type controls,
the longer the delay and unmodified control regimes,
the larger will be the deviations of the sensor value
from the setpoint. Hence, the variants with larger
communication step sizes show the observed larger
oscillations in the calculated sensor temperatures.
Despite that, the total energy consumption in the first
4 months of the year varied only from 94.9 kWh/m
(for 10 min) to 95.1 kWh/m (30 min), an insignificant
reduction in accuracy.

10 min

20 min

30 min

Te
m

pe
ra

tu
re

 [C
]

2.5

2.6

2.7

2.8

2.9

3

3.1

03:00
01.01.

06:00
01.01.

09:00
01.01.

12:00
01.01.

15:00
01.01.

18:00
01.01.

21:00
01.01.

Figure 10: Computed sensor temperatures for co-
simulations with 10, 20 and 30 min synchronisation
interval length

Based on the presented co-simulation setup, many
variants of the model and control parameters can be
analysed to optain optimal design parameters. How-
ever, a discussion of these findings is beyond the scope
of this article.

Conclusions
The FMI simulation coupling standard makes it rel-
atively simple to extend comprehensive simulation
models with external functionality. As illustrated
in the article, such additional models can often be
crafted with open-source tools such as OpenModel-
ica or even compiled manually with the help of code-
generators such as the FMICodeGenerator. Similarly,
open-source technology exists for running the coupled
simulation. The FMI for Co-Simulation is used in
this article, as it allows use of the optimised numeri-
cal integration engine in the DELPHIN model. Also,
this coupling method appears to be more commonly
supported in building engineering tools than FMI for
ModelExchange.
The setup of the co-simulation scenario with tools like
MASTERSIM is fairly straight forward and even pos-
sible within an engineering workflow (and time bud-
get). Care should be taken when connecting variables
from different models with potentially different unit
conventions. The value conversion feature of MAS-
TERSIM may be of help here.
Regarding the performance of coupled simulation, the
optimal choice of co-simulation step size is problem
specific. Initially it should be selected according to
the expected frequency of input signal changes.
The error introduced to the model by larger com-
munication intervals my be interpreted, for example,
as deliberately choosen delay time between operation
model adjustments. In the presented example, a com-
muncation interval of 10 min would mark the mini-
mum time delay between an adjustment of the heat-

ing power.
The presented example and all input data
can be accessed on the MASTERSIM website:
https://sourceforge.net/projects/mastersim/
files/examples

References
Blochwitz et al. (2011). The Functional Mockup In-
terface for Tool independent Exchange of Simula-
tion Models. In 8th International Modelica Confer-
ence 2011.

Fraunhofer IIS (2011). MODELISAR : from system
modeling to S/W running on the Vehicle ; von der
System-Modellierung zur Software im Fahrzeugein-
satz ; Schlussbericht .

COMSOL (2021). COMSOL Multiphysics®
v. 5.4. COMSOL AB, Stockholm, Sweden.
www.comsol.com.

MA (2021a). FMI Standard Webpage, The Modelica
Association, accessed Jan. 2021. fmi-standard.org.

MA (2021b). FMI Tool Listing, website, ac-
cessed 2021, The Modelica Association. fmi-
standard.org/tools.

MA (2021c). Modelica® - A Unified Object-Oriented
Language for Systems Modeling, Language Ref-
erence, Version 3.4, The Modelica Association.
www.modelica.org.

Nicolai, A. (2018). Co-Simulations-
Masteralgorithmen - Analyse und Details der
Implementierung am Beispiel des Masterpro-
gramms MASTERSIM. Qucosa http://nbn-
resolving.de/urn:nbn:de:bsz:14-qucosa2-319735.

Nicolai, A. (2020). DELPHIN 6 Webseite.
https://bauklimatik-dresden.de/delphin.

Nicolai, A. (2021a). FMI Co-Simulation Masterpro-
gram MASTERSIM, online manual, accessed 2021.
https://bauklimatik-dresden.de/mastersim.

Nicolai, A. (2021b). FMICodeGener-
ator, project website, accessed 2021.
https://github.com/ghorwin/FMICodeGenerator.

Nicolai, A. and U. Ruisinger (2020). Performanceop-
timierung hygrothermischer Simulationen durch
Parameteroptimierung. Bauphysik 42 (6), 289–299.

Stratbücker, S., C. van Treeck, S. R. Bolineni,
D. Wölki, and A. Holm (2011). A co-simulation
framework for scale-adaptive coupling between het-
erogeneous computational codes. In Roomvent
2011.

Wetter, M. and C. van Treeck (2017, September).
IEA EBC Annex 60: New Generation Comput-
ing Tools for Building and Community Energy Sys-
tems.

https://sourceforge.net/ projects/mastersim/files/examples
https://sourceforge.net/ projects/mastersim/files/examples

