New features and optimizations in the hygrothermal transport model DELPHIN 6

Dr. Andreas Nicolai

Dresden, 09/21 2017
Overview

• Physical model in DELPHIN 6
 ➢ Coupled heat and moisture transport model with detailed moisture transport and storage model
 ➢ Optional ice formation model
 ➢ Optional air flow model (forced flow/bouancy driven), fully coupled to heat and moisture transport model
 ➢ Optional salt transport model including transient phase transitions
 ➢ Many boundary condition models, contact resistances, source/sink models, special models (e.g. interior longwave radiation exchange)

 ➢ Mostly the same as in DELPHIN 5, but thoroughly reviewed and more efficient/stable (*routinely tested with automated benchmarks*)
 ➢ Support for 3D geometries (in solver, not in user interface)

• Optimization of the solver engine
 ➢ Iterative preconditioned Newton-Krylov-Methods significantly accelerate simulation of 2D details, enable 3D simulations
 ➢ Parallel solver
 ➢ Optimized memory layout for faster physics evaluation algorithms
The DELPHIN 6 Software

• Executables (Windows executables, on MacOSX and Linux similar naming)
  DELPHIN 6 User Interface (modelling environment)
 Delphin6.exe
  Console solver (command line argument controlled)
 DelphinSolver.exe
  Graphical (modern) solver, just as fast as the command line solver (except for parallel solver variants), yet with live preview of simulation results
 DelphinSolverUI.exe
  Command line discretizer (can be used to automatically perform grid sensitivity studies)
 CmdDiscretise.exe
  DSixOutputConverter utility (extracts data from output files, converts data into other formats, creates TECPLOT files)
 DSixOutputConverter.exe

• Databases (Climatic Data and Materials)

• Post-Processing
  Either DELPHIN 5 Post-Processing (can be installed alongside with DELPHIN 6)
  Or new POSTPROC 2 software (recommended for simulation analysis)
New User Interface

- New Icon and Splashscreen

Picture taken from IBK-GWT project about improving construction detail for intersection of interior separation wall with inside-insulated historic brick wall
New User Interface

- Multiple languages
 - Switch with menu option Edit → Languages...
 - Currently: English, German, French
 - Translation is simple → Translators are welcome!

- Software runs natively on Windows, MacOS and Linux

- On Mac OS X: Security → allow software from any sources
New User Interface

- Welcome page
 - Recently used projects (with preview)
 - Examples/Validation cases (with descriptions)
 - Current version, Update information, Web-content from Bauklimatik-Dresden.de
New User Interface

File Operations
New User Interface

Project, Geometry and Simulation Views
• 3 Views with project data
 ➢ Project properties, location and climate
 ➢ Construction/Geometry view (main modelling view)
 ➢ Simulation view (physical model settings, solver options, simulation start)
New User Interface

Geometry/Grid Editing
New User Interface

Dresden, 09/21 2017
Andreas Nicolai (TUD)
Language selection
Definition windows (freely arrangeable)
New Modeling View

- Zooming via mouse scroll wheel

- Equidistant view toggle mode
Consistent Coordinate System Definition

- Coordinates
- Assignment/range indexes

- Assignment order
 - Later assignments override earlier assignments (applies to all assignments)

<table>
<thead>
<tr>
<th>Row indexes</th>
<th>Column indexes</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Grid without materials assignments
- After assigning material to range 0 0 2 3
- After assigning VOID material to range 1 1 2 2
- After assigning another material to range 2 1 2 1
• Highlighting of edges/boundaries with assignments

Dash-dot line pattern for boundaries without interfaces, corresponds to symmetry conditions (adiabatic and moisture tight)

Thick solid lines indicate assigned interface
Modeling Improvements

- Highlighting of coordinate outputs (sensors)
• Highlighting of side assignments

Dashed lines show assigned contact conditions and flux outputs
Modeling Improvements

- Indication of used and unused definitions

Gray italic text indicates an unused/not assigned definition

- Assignment lists are located alongside definition window

(re-introduced from DELPHIN 4)
• No embedded material data
 ➢ Material files (*.m6) are always referenced
 ➢ Material list/definition window lists Material References

• Interfaces group several boundary conditions
 ➢ Instead of assigning individual boundary conditions to several sides, interfaces are defined (e.g. outside, inside, basement, …) and these are associated with boundary conditions
 ➢ Support for *Engineering Interface Models* (predefined sets of boundary conditions and related climatic conditions)
New Modeling Concepts

• Interfaces – Example

First floor (dashed because selected in definition view)

Outside

Basement

Boundary conditions associated with interface “Basement”
New Modeling Concepts

- Interfaces – Engineering Level
 - DIN indoor and outdoor climate
 - WTA model
 - Standard model
 - Boundary Conditions and Climate Conditions are created automatically during simulation setup
 - Engineering interface definitions can be converted to detailed model
Output handling

- Output file definitions
 - Filename
 - Physical Quantity
 - Grid reference
 - Time and spatial handling (averaging/integration)
 - Value unit

- Grids
 - Define intervals and output steps

- Global options (for all files)
 - Binary/ASCII Format
 - ASCII-Format precision (rarely needed, for example for energy density integrals to compute overall gains/losses)
 - Output time unit (same for all output files)
 - Over-hygroscopic moisture content limit (as relative humidity)
Output handling

- **Physical Quantities**
 - Quantity defines also default unit and type (flux or field quantity)
 - Anything calculated in DELPHIN is available as a quantity
 - Includes transport coefficients (which can be monitored in output files)
• Flux output sign conventions
 - Distinguish between boundary/surface fluxes and flux fields – *different sign conventions*
 - Fluxes are assigned to sides
 - One flux output (definition) can be assigned to several locations

• Rules
 - When flux outputs are assigned only to boundary sides
 Flux is *positive* when it flows *into* the construction
 i.e. a positive moisture flux increases the moisture content in the construction, a positive heat flux increases energy density (and temperature)

 - When flux is assigned to at least one internal side, flux is *positive* when it flows into *positive coordinate* direction
New Modeling Features

- Schedules
 - Replace time limits for boundary and field conditions, can be specified like output intervals

- Interface – BC indication
 - Color bars indicate types of BC associated with an interface

- Intelligent Auto-Discretization
 - Clusters grid only at boundaries where interfaces are assigned
 - Recognizes and keeps field assignments (outputs/sources)
Databases

- Material Data Base
 - set of m6 Material files (as in DELPHIN 5)
 - data files are read in separate thread – no longer delay when importing materials

- Climate Data
 - New format: c6b climate data container files for use in CCM (Climate Calculation Module)
 - Basically same content as EPW, but binary format (data protection), epw natively supported
 - Free Climate Data Editor (CCMEditor) tool available for editing/converting data

- Additional time series (climate data)
 - Still using ccd files as in DELPHIN 5
 - Now supporting csv files (tabulator separated data files):
 - first column time points, second column values, description and units in first row

 Example file:

<table>
<thead>
<tr>
<th>Time [d]</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>0.02083</td>
<td>9.0</td>
</tr>
<tr>
<td>0.04167</td>
<td>8.7</td>
</tr>
<tr>
<td>0.0625</td>
<td>7.4</td>
</tr>
</tbody>
</table>
First page: Model options

- Contains settings, that define physical model and naturally give different results
Second page: Solver options

- Tolerances control error test – to how many digits shall my conserved quantities be accurate

 Mind: there is a non-linear relationship between conserved quantities and analysed properties (e.g. relative humidity)

- Settings have an influence on model results

- Smaller tolerances slow down simulation but can help increase robustness!
Third page: Performance options

- Numerical settings only influence simulation speed
 (differences in order of rounding errors possible)
New Solvers / Performance Optimization

• Time integrators available
 - Explicit Euler (for debugging purposes)
 - Runge Kutta 47 (Dormand-Prince), explicit solver
 - Implicit Euler (for testing numerically tricky problems)
 - CVODE (default, as in DELPHIN 5)
 - Alternating-Direct-Implicit (ADI), good for certain 2D/3D problems, research code

• Linear equation system solvers (for use within implicit solvers)
 - Banded (general 1D simulations, small 2D simulations)
 - Block-Tridiagonal (VOC/Salt simulations in 1D)
 - Sparse direct (KLU solver, for thermal problems in 2D/3D)
 - GMRES and BiCGStab (for general 2D/3D cases) – Krylov-Subspace methods!

• Preconditioners (for Krylow-Subspace solvers)
 - Banded
 - ILU (incomplete LU factorization)
 - … others are research/test implementations

• Physical model evaluation done in parallel (OpenMP parallelization)

See presentation and workshop from BauSIM 2016 for details
New Solvers / Performance Optimization

• Example 1 – EN ISO 10211 – Case 2
 ➢ Energy balance only (thermal bridge problem)
 ➢ 36666 Elements, 189 half-bandwidth (rectangular 194 x 189 grid)

• Variants
 ➢ Band solver vs. KLU (in DELPHIN 6)
 ➢ Serial/parallel code (1 vs. 4 threads)
 ➢ Parameters for steady-state result (transient accuracy does not matter)
• Example 2 – Corner
 - Hygrothermal simulation
 - 10931 Elemente (21862 Unknowns)

• Variants
 - Serial banded solver in DELPHIN 5 (half-bandwidth 223)
 - Parallel GMRES solver in DELPHIN 6 (4 threads), ILU preconditioner, colored Jacobian (14 colors)

Simulation time [min], first 60 days of simulation
Remote Solver Server

- Send projects to remote (powerful) server and collect results

 - Project input files are collected and exported into project package (*.d6pp)
 - Project package is sent to server, scheduled in either fast or slow queue (fast jobs are automatically aborted after 30 minutes if not yet finished)
 - Once completed, results are archived as 7zip file and retrieved from server
 - Results are extracted in projects directory just as if simulated locally \(\rightarrow \) ready for PostProcessing
New License Model

• Only limited lifetime licenses
 ➢ Much reduced license costs
 ➢ Annual license duration with support and free updates/upgrades
 ➢ Activation provided for work and private computer (linked to person/company)
 ➢ Activation needs to be updated every year (license renewal)

• License/support renewal/extension:
 ➢ Always for 1 year after last license expired, includes free updates/upgrades and support
 ➢ Cannot skip renewal intervals, after approximately 4 years same price as new license

• Pricing:

 Commercial license: 800 € initial + 600 €/a
 Academic license: 600 €/a
 Student/teaching license: --- €/a

 all prices excluding VAT
New features and optimizations in the hygrothermal transport model DELPHIN 6

Dr. Andreas Nicolai

Thank You! Questions?