DELPHIN 6 Scripting Tutorial

Andreas Nicolai
andreas.nicolai@tu-dresden.de

Version 1.0.0, June 2020

mailto:andreas.nicolai@tu-dresden.de

Table of Contents

1. Scripting overview

2. Some thoughts before we start
2.1. Step-wise approach
2.2. Sequential approach

3. Example 1 - a simple variation script for modifying initial conditions
3.1. Preparation steps and the basic algorithm
3.2. The variation script

4. Example 2 - a parameter variation study including grid adjustment
4.1. Preparation steps - template files

4.2. Variation script

© I 0 W DN DN DN =

Download of scripts and examples:

* DELPHING_scripting_example_1.7z

* DELPHING_scripting_example_2.7z

1. Scripting overview

The possibility to run the DELPHIN solver as command line executable with plain ASCII text and XML input files
allows for very flexibly automatization of simulation variant studies. The tutorial shows you a pragmatic and simple
approach to use Python for scripted execution. In the tutorial we’ll cover:

* reading/modifying/writing DELPHIN project files

» regenerating/adjusting the discretization grid

* modifying material properties and climatic data

» running the simulation sequential/parallel (several jobs, each possibly parallized)

¢ reading simulation output files

2. Some thoughts before we start

When running scripted variant studies there are a couple of things to consider:

Will the hard drive space be enough to store results of all simulation runs?
* Are there many fast simulations, or rather slow simulations (that would benefit from parallel execution)?
» Do variations depend on previous runs (e.g. optimization calculations)?

* Are the simulations output-heavy (e.g. much simulation time is spent on writing/reading output data)?

Some general recommendations:

2.1. Step-wise approach

When hard-drive space is not an issue, and variations do not depend on each others outputs (example: parameter
screening, no optimization runs), do the scripting in distinct steps:

1. generate simulation projects first,
2. run all the jobs (in parallel),

3. read all results and evaluate data

Hereby, the individual project files should be placed in a directory with different project names, e.g. var_01.d6p,
var_02.d6p. The results will end up in directories with same name, making analysis easy.

@ This approach is also the most robust. You can stop each processing step at will and continue
- later on, without redoing work.

PostProc 2 Handbuch 1.0.0, June 2020 1. Scripting overview | 1

https://bauklimatik-dresden.de/delphin/2nd/doc/DELPHIN6_scripting_example_1.7z
https://bauklimatik-dresden.de/delphin/2nd/doc/DELPHIN6_scripting_example_2.7z

2.2. Sequential approach

Either when hard-drive space is limited, or results of one run impact generation of the next, you need to perform a
sequential operation:

1. generate project file

2. run

3. evaluate

4, next iteration - (1)
Hereby, it is recommended to use the same project file, but cache intermittend states to be able to continue
simulation. For example, when a temperature sensor output is obtained, you may copy the file

temperature_sensor.dbo to temperature_sensor_XXX.d6o where XXX is a running iteration counter. Then, if you need to
re-start the simulation, you take the latest sensor data (i.e. file with largest number) as initial variant.

3. Example 1 - a simple variation script for modifying initial
conditions

To get started, we create a simple 1D simulation project, modify the initial moisture content over a range of values
and generate a data set with moisture content after 2 years.

3.1. Preparation steps and the basic algorithm

Step 1

create the template project

You set up a project file as usual, test-simulate it and save it somewhere. Then you create a copy of the project file,
for example in some subdirectory variations called template.dbp.

Step 2

replace project file parts to be modified with placeholders

You now open the template project file in a text editor, and replace the parts of the file to be modified with a unique
placeholder text. In our example, I chose ${INITIAL_MOISTURE_CONTENT}:

Initial condition sections before

<InitialConditions>
<InitialCondition name="Initial moisture content" type="MoistureContent">
<IBK:Parameter name="Value" unit="m3/m3">0.01</IBK:Parameter>
</InitialCondition>
</InitialConditions>

2 | 2.2. Sequential approach

Initial condition sections after inserting placeholder

<InitialConditions>
<InitialCondition name="Initial moisture content" type="MoistureContent">
<IBK:Parameter name="Value" unit="m3/m3">${INITIAL_MOISTURE_CONTENT}</IBK:Parameter>
</InitialCondition>
</InitialConditions>

The modified project file will now serve as template for all our variants.

Step 3

generate project files for all variants

Now we use Python for the first time. The script to write is rather simple:

read template file content into string
* replace placeholder text with value of current variant
» write project file with unique variant name to directory

» remember project file name in a list of simulation jobs

Step 4

run all jobs

We call the solver for each registered job and wait for all the jobs to finish.

Step 5

collect results

We now read all the result files for each variant, extract the interesting values and store them into some data
container.

Step 6

save results into some meaningful file

Finally, we dump the data into some file for further processing (we might also generate diagrams with Python-
Matplotlib right away, but PostProc 2 does a better job at that).

The script below does all that. The functions read_file() and write_file() are some handy functions we will use
quite often, later on. But let’s go through the script step-by-step:

3.2. The variation script

The script starts the typical import statements and constants:

PostProc 2 Handbuch 1.0.0, June 2020 3.2. The variation script | 3

Header of the file, import statements and constants

#!/usr/bin/env python3
-*- coding: utf-8 -*-

0s, Sys
subprocess

import IBK utility classes
IBK *

global constants
VARIANTS_SUBDIR = "variants"
DELPHIN_EXECUTABLE = "DelphinSolver"

get absolute file path to DELPHIN solver (assumed to be inside this directory)
DELPHIN_EXECUTABLE = os.path.join(os.getcwd(), DELPHIN_EXECUTABLE)
not os.path.exists(DELPHIN_EXECUTABLE):
("Missing DELPHIN Solver executable '{}'".format(DELPHIN_EXECUTABLE))
exit(1)

Important here is only the directory for the generated project files, as well as the path to the DELPHIN command
line solver. It is good practice to use a full file path to the solver executable, but instead of hard-coding an absolute
path, we generated from the current working directory.

First functionality in the script comes with the declaration of two utility functions:

Functions for reading and writing simple text files to/from string variables, including some basic error
handling

read_file(fname):

fobj = open(fname, 'r'")
content = fobj.read()
fobj.close()
fobj # release file handle
content
I0Error e:
(str(e))

RuntimeError("Error reading/opening file '{}'".format(fname))
write_file(fname, contents):

fobj = open(fname, 'w')
fobj.write(contents)
fobj.close()
fobj # release file handle
I0Error e:
(str(e))
RuntimeError ("Error opening file '{}' for writing".format(fname))

The actual script starts with reading of the template project file we created earlier. Also, the target directory is
created in step 2, if not existing already.

4 | 3.2. The variation script

Reading of project template file into a variable

*k%k ma-‘ﬂ *k%k

1. read template project file
TEMPLATE = read_file('template.dép")

2. create directory for project variants
not os.path.exists(VARIANTS_SUBDIR):
os.mkdir (VARIANTS_SUBDIR)

Now the project files for the different variants are created:

In 20-steps the initial moisture content is variied and project files var_00.d6p ... var_19.d6p are created

3. loop over range of moisture contents - 0.01...0.21 and create project variations
jobs =[]

i in range(20):

moisture_content = 0.01 + i*0.01

replace placeholder text
variant = TEMPLATE.replace('${INITIAL_MOISTURE_CONTENT}','{}"'.format(moisture_content))

#f create variant file name, file name pattern = var_xx.d6p where xx is a zero-leading number
dépfile = VARIANTS_SUBDIR + "/var_{:02d}.d6p".format(i)

#f write the file, unless it exists already
not os.path.exists(dbpfile):
write_file(d6pfile, variant)

add to list of jobs, unless project was already simulated, use command line arguments -x for windows,
and -p=2 for 2 CPUs per job

not os.path.exists(dépfile[:-4] + "/var/restart.bin"):

jobs.append([DELPHIN_EXECUTABLE, '-x', '--verbosity-level=0',6 '-p=2', dépfile])

Besides creating and writing the project files, we also generate a list with simulation jobs. Each job is basically
defined as command line, stored as list in the list of jobs.

Now we can run all jobs one after another (option 1):
Running all jobs sequentially

4. run all the jobs, one after another
job in jobs:

(job[-11)
solverProcess = subprocess.Popen(job)
solverProcess.wait()

0SError e:

(str(e))

Here, we spawn a subprocess for each job and wait until it has finished. Then we take the next, until all simulation
jobs have finished.

Alternatively, we can run several jobs at the same time (thanks to multi-core CPUs). The thread-handling is wrapped
in the utility class IBK.JobRunner.

PostProc 2 Handbuch 1.0.0, June 2020 3.2. The variation script | 5

Running all jobs in parallel (here, 4 parallel jobs are spawned, each using 2 CPUs, so we use all our 8 CPU
cores)

4. run all the jobs in parallel
jobRunner = JobRunner(4) # 4 jobs at the same time
jobRunner.run(jobs)

For larger simulation projects it is often worthwhile to run the simulations sequentially, yet give
(r) each simulation the maximum number of CPUs with the -p=<cpu-count> command line
w argument. Then, the limiting memory bandwidth is available to each simulation job and
multiple jobs won’t compete over the memory bus.

Finally, after we are done with simulating, we collect the results:
Reading of all result files and storing data for each variation into a list of results

5. read all result files and collect results

create manager for geometry files - actually not used here, but needed by Delphin6OutputFile()
geoManager = Delphin6GeoFileManager()

resultData = []
i in range(20):
moisture_content = 0.01 + i*0.01
dépfile = VARIANTS_SUBDIR + "/var_{:02d}.d6p".format(i)

NOTE: instead of recreating filename and variant here, one could also store this information
i in 3 list and use it here

path to result déo file
resultFile = d6pfile[:-4] + "/results/Moisture_content_integral.d6o"

read file
d6o = Delphin6OutputFile()
not d6o.read(resultFile, geoManager):
("Error reading result file '{}'".format(resultFile))

get value for time index #2
value = d6o.valuesAtIndex(2)

store in vector
resultData.append((moisture_content, value[0]))

The utility classes Delphin6GeoFileManager and Delphin6OutputFile handle the actual parsing of ASCII-Format output
files. The geometry file manager basically stores all geometry files referenced from d6o files so that it is not
necessary to read the same geometry file multiple times. In this example, there is not much use for geometry files,
since we only look at integral values. But if profiles were to be inspected, the geometry file provided by the
geometry file manager can be queried for the required coordinates.

Finally we write the data into a tsv-file (tab-separated values), which can be easily read into LibreOffice-Calc/Excel
and the like, or be readily visualized with PostProc 2:

6 | 3.2. The variation script

Dumping the results into some file suitable for post-processing.

6. create a tsv-file with initial moisture content vs. final content
tsv = "Moisture content [m3/m3]\tFinal moisture mass [kg/m]\n"
val in resultData:

tsv = tsv + "{I\t{}\n".format(val[@], val[1])

write_file("results.tsv", tsv)
("Wrote 'results.tsv'.")

That’s it already for the first tutorial. Source code and example project can be found inside the archive
DELPHING6_scripting_example_1.7z.

4. Example 2 - a parameter variation study including grid
adjustment

In this tutorial we’ll do a more complex variation study where we change 3 things:

¢ climatic data / location
* insulation material properties (thermal conductivity)

¢ insulation width
We want to visualize the increase in interstitial condensate depending on these locations. The goal is to create
diagrams with PostProc 2 that show the course of condensate forming in the construction for the different variants.
To keep diagramm generation work simple, we’ll construct our variant project file names such, that they will be

already meaningful for PostProc-analysis.

Changing a material layer width requires grid adjustment. For this purpose we use the command line discretization
tool CmdDiscretize installed in the DELPHIN 6 install directory.

Let’s look at the script, step-by-step.

4.1. Preparation steps - template files

As in the first tutorial, we need to generate template files first. We set up a base project and test-simulate it (see
subdirectory BaseProject in the example_2 directory).

We create a copy of the project and name it template.d6p, and materials/Calcium silicate.mb to
materials/template.mé.

The original directory structure looks as follows is obtained:

PostProc 2 Handbuch 1.0.0, June 2020 4. Example 2 - a parameter variation study including grid adjustment | 7

https://bauklimatik-dresden.de/delphin/2nd/doc/DELPHIN6_scripting_example_1.7z

BaseProject/

—— CaSi1i30_Brick600_1D.d6p

—— DE-01-TRY-2010__Bremerhaven__Jahr_00000K0 00007m.c6b
—— DE-04-TRY-2010__Potsdam__Jahr_00000K0_00081m.c6b
—— DE-15-TRY-2010__Garmisch_Partenkirchen__Jahr_00000K0_00719m.c6b
—— materials

\ —— Calcium silicate.m6

\ F—— Clinker.m6

| —— Glue mortar.m6

\ —— Historical Brick.m6

| [—— Lime cement plaster.m6

| L—— template.m6

L—— template.dbp

Pretty early in the script we will copy this entire directory structure to the target variations directory.

- It is generally a good idea to separate original data and automatically generated data, preferably
O in a completely separate directory structure. In case you want to clean up and delete the
- generated data, you can just remove the directory structure without risking loss of original data.

Now we edit the material template file materials/template.m6 and insert the placeholder ${LAMBDA}:
Material data file with inserted placeholder text

D6MARLZ! 006.001

[IDENTIFICATION]
NAME = EN: Calcium silicate

[TRANSPORT _BASE_PARAMETERS]

LAMBDA = ${LAMBDA} W/mK
Aw = 1.24 kg/m2s05
MEW =5 -

DLEFF = 1.3e-05 m2/s

Next we edit the project template file template.db6p:

8 | 4.1. Preparation steps - template files

Project template with inserted placeholders

<?xml version="1.0" encoding="UTF-8" 7>
<DelphinProject ... fileVersion="6.1">

<!--Model data, solver settings, general parameters-->
<Init>
<SimulationParameter>
<BalanceEquationModule>BEHeatMoisture</BalanceEquationModule>
<Interval>
<IBK:Parameter name="Duration" unit="a">1</IBK:Parameter>
</Interval>
<ClimateDataFilePath>${Project Directory}/${LOCATION}</ClimateDataFilePath>
<StartYear>2000</StartYear>
<TimeZone>1</TimeZone>
</SimulationParameter>

<SolverParameter>
<LESSolver>GMRES</LESSolver>
</SolverParameter>
</Init>
QL o 0 N N NN N A NN NN = >

<!--List of all materials used in this construction-->
<Materials>
<MaterialReference name="Lime cement plaster" color="#ff80ff80">${Project Directory}/materials/Lime cement
plaster.mb</MaterialReference>
<MaterialReference name="Historical Brick" color="#ffff8040">${Project Directory}/materials/Historical
Brick.mb</MaterialReference>
<MaterialReference name="Clinker" color="#ffff8080">${Project
Directory}/materials/Clinker.m6</MaterialReference>
<MaterialReference name="Glue mortar" color="#ff8080c0">${Project Directory}/materials/Glue
mortar.m6</MaterialReference>
<MaterialReference name="Calcium silicate" color="#ff80ffff">${Project
Directory}/materials/${INSULATION_MATERIAL}</MaterialReference>
</Materials>

<!--Discretization data (grid and sketches)-->
<Discretization>

<XSteps unit="m">0.01 ${INSULATION_LAYER_WIDTH} 0.004 0.012 0.24 0.01 0.24 0.012 0.12 </XSteps>
</Discretization>

We have 3 placeholders to replace: ${LOCATION}, ${INSULATION_MATERIAL}, ${INSULATION_LAYER_WIDTH}

o Obviously, we need to remove the discretization grid in the template.db6p file before editing it.
The material layer we want to modify should be a single column (assignment) only.

4.2. Variation script

We start with the usual imports and constant definitions:

PostProc 2 Handbuch 1.0.0, June 2020 4.2. Variation script | 9

#!/usr/bin/env python3
-*- coding: utf-8 -*-

0S, SYS
subprocess
distutils.dir_util copy_tree

IBK *

BASE_SUBDIR = "BaseProject"
VARIANTS_SUBDIR = "variations"

DELPHIN_EXECUTABLE = "DelphinSolver"
DISCTOOL_EXECUTABLE = "CmdDiscretise"

get absolute file paths tools (assumed to be inside this directory)
DELPHIN_EXECUTABLE = os.path.join(os.getcwd(), DELPHIN_EXECUTABLE)
not os.path.exists(DELPHIN_EXECUTABLE):
("Missing DELPHIN Solver executable '{}'".format(DELPHIN_EXECUTABLE))
exit(1)

DISCTOOL_EXECUTABLE = os.path.join(os.getcwd(), DISCTOOL_EXECUTABLE)
not os.path.exists(DISCTOOL_EXECUTABLE):
("Missing CmdDiscretize executable '{}'".format(DISCTOOL_EXECUTABLE))
exit(1)

list of climate locations to use; store as tuples (file, description)
CLIMATE_FILES = [
("DE-01-TRY-2010__Bremerhaven__Jahr_00000K0_00007m.c6b", "Bremerhaven"),
("DE-04-TRY-2010__Potsdam__Jahr_00000K0_00081m.c6b", "Potsdam"),
("DE-15-TRY-2010__Garmisch_Partenkirchen__Jahr_00000K0_00719m.c6b", "Garmisch")
]

list of insulation layer thicknesses to use
LAYER_WIDTHS = [0.04, 0.05, 0.06, 0.08, 0.10]

insulation properties
LAMBDA = [0.04, 0.044, 0.048, 0.053]

The variants are defined through different lists with the individual parameters to use. For the climate data files we
store both the filename of the c6b-file and a meaningful name to be used in the project file name later.

Also, we now have two command line tools - the DELPHIN solver executable and the command line discretization
tool.

Next we have our utility functions again (Hint: you may want to place them into some separate Python file):

10 | 4.2. Variation script

read_file(fname):

fobj = open(fname, 'r')
content = fobj.read()
fobj.close()
fobj # release file handle
content
IOError e:
(str(e))

RuntimeError("Error reading/opening file '{}'".format(fname))
write_file(fname, contents):

fobj = open(fname, 'w')
fobj.write(contents)
fobj.close()
fobj # release file handle
I0Error e:
(str(e))

RuntimeError("Error opening file '{}' for writing".format(fname))

First of all, we read template files, create the target directory an copy the base data structure.
Initial setup

kKK ma-"n kKK

1. read template files
PROJECT_TEMPLATE = read_file(BASE_SUBDIR + '/template.dép')
MATERIAL_TEMPLATE = read_file(BASE_SUBDIR + '/materials/template.m6")

2. create directory for project variants
not os.path.exists(VARIANTS_SUBDIR):
os.mkdir (VARIANTS_SUBDIR)

3. copy base project directory to variations directory
copy_tree(BASE_SUBDIR, VARIANTS_SUBDIR)

Now we generate our material files:
Generating material files

4. create material variants

mat_files = []
Imd in LAMBDA:
m6file = "casi_{:.3f}.m6".format(1md) # file name format casi_0.xxx.mb
mat_files.append(m6file)
variant = MATERIAL_TEMPLATE.replace('${LAMBDA}','{}"'.format(1md))
write the file inside the 'materials' subdirectory
write_file(VARIANTS_SUBDIR + "/materials/" + m6file, variant)

Note, we store the relative path to the generated material file in the list mat_files, so that we do not need to
regenerate the filename later on (if we choose to adjust the file name later, we only need to do this at one place in
the code).

Step 5 is the generation of the project files:

PostProc 2 Handbuch 1.0.0, June 2020 4.2. Variation script | 11

Project file creation and automated grid generation

3. create project variants

jobs =[]

cli in CLIMATE_FILES:
1mdIdx in range(len(LAMBDA)):
1md = LAMBDA[1mdIdx]
m6file = mat_files[1mdIdx]

We have three independent variation types, so there are three nested loops. The project template is configured as in

w in LAYER_WIDTHS:

replace placeholder texts for climate data file and layer width
variant = PROJECT_TEMPLATE.replace('${LOCATION}', '{}'.format(cli[0]))
variant = variant.replace('${INSULATION_MATERIAL}','{}'.format(m6file))
variant = variant.replace('${INSULATION_LAYER_WIDTH}','{}'.format(w))

create variant file name, file name pattern = <location>_<width>_<lambda>.d6p
dopfile = VARIANTS_SUBDIR + "/{}_{:.2f}_{:.3f}.d6p".format(cli[1], w, 1md)

write the file
write_file(d6pfile, variant)

run cmd line discretization tool

> CmdDiscretize -m=auto -1=1.7 -o=<dbpfile> dbpfile

solverProcess = subprocess.Popen([DISCTOOL_EXECUTABLE, '-m=auto', '-1=1.7', '-o="' + d6pfile+'"', d6pfile])
solverProcess.wait()

add to list of jobs, unless project was already simulated, use command line arguments -x for windows,
and -p=2 for 2 CPUs per job

not os.path.exists(dépfile[:-4] + "/var/restart.bin"):

jobs.append([DELPHIN_EXECUTABLE, '-x', '--verbosity-level=0', '-p=2', d6pfile])

example 1 by replacing the placeholder strings.

Once the project file is stored on the harddrive, we run the command line discretization tool CmdDiscretize (see also
example 1 for the use of subprocess to run an external tool). The argument -1=1.7 says "use stretch factor of 1.7",
+ dopfile defines the output file to be the same as the
generated project file (in-place operation). This project file will now have a meaningful discretization grid. The

which is ok for this 1D geometry. The argument '-o=

project file and a list of arguments is added to the job list, as we did already in example 1.

Finally, we run all the simulation jobs:

Run simulation projects in parallel

6. run all the jobs in parallel

jobRunner =

JobRunner(4) # 4 jobs at the same time

jobRunner.run(jobs)

And we are done. We can now add the variations-directory to PostProc 2 and create a diagram of all the

condensation mass time series to find out the worst/best-case.

12 | 4.2. Variation script

	DELPHIN 6 Scripting Tutorial
	Table of Contents
	1. Scripting overview
	2. Some thoughts before we start
	2.1. Step-wise approach
	2.2. Sequential approach

	3. Example 1 - a simple variation script for modifying initial conditions
	3.1. Preparation steps and the basic algorithm
	3.2. The variation script

	4. Example 2 - a parameter variation study including grid adjustment
	4.1. Preparation steps - template files
	4.2. Variation script

